Solveeit Logo

Question

Question: A cubic block of mass $m$ is sliding down on an inclined plane at 60° with an acceleration of $\frac...

A cubic block of mass mm is sliding down on an inclined plane at 60° with an acceleration of g2\frac{g}{2}, the value of coefficient of kinetic friction is

A

31\sqrt{3}-1

B

312\frac{\sqrt{3}-1}{2}

C

313\frac{\sqrt{3}-1}{\sqrt{3}}

D

3+12\frac{\sqrt{3}+1}{2}

Answer

31\sqrt{3}-1

Explanation

Solution

  1. Forces on the block:
    • Weight component down the incline: mgsin60mg \sin 60^\circ
    • Normal force: N=mgcos60N = mg \cos 60^\circ
    • Kinetic friction: fk=μkN=μkmgcos60f_k = \mu_k N = \mu_k mg \cos 60^\circ
  2. Newton's second law: mgsin60fk=mamg \sin 60^\circ - f_k = ma
  3. Substitute values: mg32μkmg12=mg2mg \frac{\sqrt{3}}{2} - \mu_k mg \frac{1}{2} = m \frac{g}{2}
  4. Simplify and solve for μk\mu_k: g32μkg12=g2g \frac{\sqrt{3}}{2} - \mu_k g \frac{1}{2} = \frac{g}{2} 3μk=1\sqrt{3} - \mu_k = 1 μk=31\mu_k = \sqrt{3} - 1