Solveeit Logo

Question

Physics Question on Electric Field

A cube of side 'a' has point charges +Q+ Q located at each of its vertices except at the origin where the charge is Q-Q. The electric field at the centre of cube is:A cube of side 'a' has point charges +Q located at each of its vertices except at the origin where the charge is −Q

A

Q33πε0a2(x^+y^+z^)\frac{- Q }{3 \sqrt{3} \pi \varepsilon_{0} a ^{2}}(\hat{ x }+\hat{ y }+\hat{ z })

B

2Q33πε0a2(x^+y^+z^)\frac{-2 Q }{3 \sqrt{3} \pi \varepsilon_{0} a ^{2}}(\hat{ x }+\hat{ y }+\hat{ z })

C

2Q33πε0a2(x^+y^+z^)\frac{2 Q }{3 \sqrt{3} \pi \varepsilon_{0} a ^{2}}(\hat{ x }+\hat{ y }+\hat{ z })

D

Q33πε0a2(x^+y^+z^)\frac{ Q }{3 \sqrt{3} \pi \varepsilon_{0} a ^{2}}(\hat{ x }+\hat{ y }+\hat{ z })

Answer

2Q33πε0a2(x^+y^+z^)\frac{-2 Q }{3 \sqrt{3} \pi \varepsilon_{0} a ^{2}}(\hat{ x }+\hat{ y }+\hat{ z })

Explanation

Solution

We can replace Q-Q charge at origin by +Q+ Q and 2Q.-2 Q .
Now due to +Q+Q charge at every corner of cube. Electric field at center of cube is zero so now net electric field at center is only due to 2Q-2 Q charge at origin.
E=kqrr3=1(2Q)a2(x^+y^+z^)4πε0(a23)3\vec{ E }=\frac{ kq \vec{ r }}{ r ^{3}}=\frac{1(-2 Q ) \frac{ a }{2}(\hat{ x }+\hat{ y }+\hat{ z })}{4 \pi \varepsilon_{0}\left(\frac{ a }{2} \sqrt{3}\right)^{3}}

E=2Q(x^+y^+z^)33πa2ε0\vec{ E }=\frac{-2 Q (\hat{ x }+\hat{ y }+\hat{ z })}{3 \sqrt{3} \pi a ^{2} \varepsilon_{0}}

Hence, The correct answer is option (B) : 2Q33πε0a2(x^+y^+z^)\frac{-2 Q }{3 \sqrt{3} \pi \varepsilon_{0} a ^{2}}(\hat{ x }+\hat{ y }+\hat{ z })