Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A cord is wound around the circumference of wheel of radius rr, the axis of wheel is horizontal and moment of inertia about it is II. A weight mg is attached to the cord at the end. The weight falls from rest. After falling through a distance hh, the angular velocity of wheel will be

A

2gh1+mr\sqrt{\frac{2gh}{1+mr}}

B

2gh\sqrt {2gh}

C

[2mgh1+mr2]1/2\left[\frac{2 mgh }{1+ mr ^{2}}\right]^{1 / 2}

D

2mgh1+2mr2\sqrt {\frac {2mgh}{1+2mr^2}}

Answer

[2mgh1+mr2]1/2\left[\frac{2 mgh }{1+ mr ^{2}}\right]^{1 / 2}

Explanation

Solution

Applying energy conservation, we have Ui+Ki=Uf+KfU _{ i }+ K _{ i }= U _{ f }+ K _{ f } Where, Ui=U _{ i }= initial potential energy of the (block + pulley) system Uf=U _{ f }= final potential energy of the (block+pulley) system Ki=K _{ i }= initial kinetic energy of the system Kf=K _{ f }= final kinetic energy of the system Here, initial situation corresponds to rest position of the system and final situation correspond to position after falling through height hh. Eg. (i) gives 0+0=mgh+12mv2+121ω20+0=- mgh +\frac{1}{2} mv ^{2}+\frac{1}{2} 1 \omega^{2} mgh=12m(ωr)2+12lω2 =12mω2r2+12lω2\begin{aligned} \Rightarrow mgh &=\frac{1}{2} m (\omega r )^{2}+\frac{1}{2} l \omega^{2} \\\ &=\frac{1}{2} m \omega^{2} r ^{2}+\frac{1}{2} l \omega^{2} \end{aligned} 2mgh=ω2[mr2+1]\Rightarrow 2 mgh =\omega^{2}\left[ mr ^{2}+1\right] ω2=2mgh1+mr2\Rightarrow \omega^{2}=\frac{2 mgh }{1+ mr ^{2}} ω=[2mgh1+mr2]1/2\Rightarrow \omega=\left[\frac{2 mgh }{1+ mr ^{2}}\right]^{1 / 2}