Solveeit Logo

Question

Question: A copper wire of length 2.4 m and a steel wire of length 1.6 m, both of diameter 3 mm, are connected...

A copper wire of length 2.4 m and a steel wire of length 1.6 m, both of diameter 3 mm, are connected end to end. When stretched by a load, the net elongation is found to be 0.7 mm. The load applied is

(Ycopper=1.2×1011 N m2Ysteel=2×1011 N m2)(Y_{copper} = 1.2 \times \text{1}\text{0}^{\text{11}}\text{ N }\text{m}^{- 2}\text{, }Y_{steel} = 2 \times \text{1}\text{0}^{\text{11}}\text{ N }\text{m}^{- 2})

A

1.2×102 m1.2 \times 10^{2}\text{ m}

B

1.8×102 m1.8 \times 10^{2}\text{ m}

C

2.4×102 m2.4 \times 10^{2}\text{ m}

D

3.2×102 m3.2 \times 10^{2}\text{ m}

Answer

1.8×102 m1.8 \times 10^{2}\text{ m}

Explanation

Solution

: Let the load applied be W.

Since both the wires have the same tension (equal to the load W) and same area of cross-section A, hence both wires have the same tensile stress.

As stress = Young’s modulus ×Strain

WA=YC×ΔLCLC=YS×ΔLSLS\therefore\frac{W}{A} = Y_{C} \times \frac{\Delta L_{C}}{L_{C}} = Y_{S} \times \frac{\Delta L_{S}}{L_{S}} ……(i)

Where the subscripts C and S refer to copper and steel respectively.

ΔLCΔLS=LCLS×YSYC\therefore\frac{\Delta L_{C}}{\Delta L_{S}} = \frac{L_{C}}{L_{S}} \times \frac{Y_{S}}{Y_{C}}

Here,

For copper wire, LC=2.4mL_{C} = 2.4m

YC=1.2×1011Nm2Y_{C} = 1.2 \times 10^{11}Nm^{- 2}

For steel wire, LS=1.6mL_{S} = 1.6m

YS=2×1011Nm2Y_{S} = 2 \times 10^{11}Nm^{- 2}

ΔLCΔLS=(2.4m1.6m)×(2×1011Nm2)(1.2×1011Nm2)=52\therefore\frac{\Delta L_{C}}{\Delta L_{S}} = \left( \frac{2.4m}{1.6m} \right) \times \frac{(2 \times 10^{11}Nm^{- 2})}{(1.2 \times 10^{11}Nm^{- 2})} = \frac{5}{2}…..(ii)

The total elongation is

ΔLC+ΔLS=0.7mm=7×104m\Delta L_{C} + \Delta L_{S} = 0.7mm = 7 \times 10^{- 4}m ……(iii)

Solving Eq. (ii) and (iii), we get

ΔLC=5×104mandΔLS=2×104m\Delta L_{C} = 5 \times 10^{- 4}mand\Delta L_{S} = 2 \times 10^{- 4}m

Form Eq. (i)

W=A×YC×ΔLCLCW = A \times Y_{C} \times \frac{\Delta L_{C}}{L_{C}}

=π×(1.5×103m)2×1.2×1011Nm2= \pi \times (1.5 \times 10^{- 3}m)^{2} \times 1.2 \times 10^{11}Nm^{- 2}

×5×104m2.4m\times \frac{5 \times 10^{- 4}m}{2.4m}

=1.8×102N1.8 \times 10^{2}N