Solveeit Logo

Question

Quantitative Aptitude Question on Mensuration

A copper sphere of radius 5 cm is beaten and drawn into a wire of diameter 0.5 cm. Calculate the length of the wire.

A

26.06 m

B

26.60 m

C

26.63 m

D

26.66 m

Answer

26.06 m

Explanation

Solution

From the question we know that,

rr = 5 cm

Volume of sphere (V)(V) = 43πr3\frac{4}{3} \pi r^3

= 43π(5)3\frac{4}{3} \pi (5)^3

= 43π×125\frac{4}{3} \pi \times 125

5003cm3\frac{500}{3} cm^3

=Volumn of wire (Vw)(Vw) = πr2×length\pi r^2 \times length

r wirer\ wire = 0.52\frac{0.5}{2} (as 0.5 is diameter)

= 0.25 cm

VwV w = π×(0.25)2×L\pi \times (0.25)^2 \times L

= π×(0.0625)cm2×L\pi \times (0.0625) cm^2 \times L

= 0.0625πLcm30.0625 \pi Lcm^3

5003π\frac{500}{3} \pi = 0.0625πL0.0625 \pi L

= 5003=0.0625×L\frac{500}{3} = 0.0625 \times L

L=5003×0.0625L = \frac{500}{3 \times 0.0625}

L=5000.1875L = \frac{500}{0.1875}

LL ≈ 266.67 cm

LL (in meter) = 266.67100\frac{266.67}{100}

= 26.67 ≈ 26.66 m

The correct option is (D): 26.66 m