Solveeit Logo

Question

Physics Question on Electromagnetic induction

A copper rod of mass m slides under gravity on two smooth parallel rails, with separation ll and set at an angle of θ\theta with the horizontal. At the bottom, rails are joined by a resistance RR. There is a uniform magnetic field BB normal to the plane of the rails, as shown in the figure. The terminal speed of the copper rod is :

A

mgRtanθB2l2\frac{mg \, R \, \tan \, \theta}{B^2 l^2}

B

mgRcotθB2l2\frac{mg \, R \, \cot\, \theta}{B^2 l^2}

C

mgRsinθB2l2\frac{mg \, R \, \sin\, \theta}{B^2 l^2}

D

mgRcosθB2l2\frac{mg \, R \, \cos \, \theta}{B^2 l^2}

Answer

mgRsinθB2l2\frac{mg \, R \, \sin\, \theta}{B^2 l^2}

Explanation

Solution

At terminal velocity, net force on rod =mgsinθ=m g \sin \theta
mgsinθ=iBl\Rightarrow m g \sin \theta=i B l
Now, IBl=(BvlR)Bl=B2l2vRI B l=\left(\frac{B v l}{R}\right) B l=\frac{B^{2} l^{2} v}{R}
mgsinθ=B2l2vR\Rightarrow m g \sin \theta=\frac{B^{2} l^{2} v}{R}
v=mgRsinθB2l2\Rightarrow v=\frac{m g R \sin \theta}{B^{2} l^{2}}