Solveeit Logo

Question

Physics Question on Electric Charge

A copper rod ABAB of length ll is rotated about end A with a constant angular velocity ω\omega. The electric field at a distance xx from the axis of rotation is

A

mω2xe\frac{\operatorname{m} \omega^{2} x }{ e }

B

mωxel\frac{m \omega x}{e l}

C

mxω2l\frac{m x}{\omega^{2} l}

D

meω2x\frac{m e}{\omega^{2} x}

Answer

mω2xe\frac{\operatorname{m} \omega^{2} x }{ e }

Explanation

Solution

We know in circular motion net force acting on it must be mv2r\frac{ mv ^{2}}{ r }
When the rod rotates, electrons in it also rotates which produce electric field EE at distance xx.
Force on the electron, Fe=eE=mω2xFe = eE = m \omega^{2} x
Ee=mv2x(v=xω)\therefore Ee =\frac{ mv ^{2}}{ x } \quad( v = x \omega)
Ee=m(xω)2xEe =\frac{ m ( x \omega)^{2}}{ x }
E=mω2xe\Rightarrow E =\frac{ m \omega^{2} x }{ e }