Solveeit Logo

Question

Physics Question on Newtons Law of Cooling

A copper ball is heated to 100C100{}^\circ C . It cools to 80C80{}^\circ C in 5 minutes and to 65C65{}^\circ C in 10 minutes. The temperature of the surrounding is

A

13C13{}^\circ C

B

15C15{}^\circ C

C

18C18{}^\circ C

D

20C20{}^\circ C

Answer

20C20{}^\circ C

Explanation

Solution

: Let the temperature of surrounding be θC\theta {}^\circ C \therefore In first case, θ1θ2t=K(θ1+θ22θ)\frac{{{\theta }_{1}}-{{\theta }_{2}}}{t}=K\left( \frac{{{\theta }_{1}}+{{\theta }_{2}}}{2}-\theta \right) Or (10080)5=K(100+802θ)\frac{(100-80)}{5}=K\left( \frac{100+80}{2}-\theta \right) or 4=K(90θ)4=K(90-\theta ) ............... (i) In second case, temperature cools from 80C80{}^\circ C to 65C65{}^\circ C in (105)=5(10-5)=5 minutes. \therefore 80655=K(80+652θ)\frac{80-65}{5}=K\left( \frac{80+65}{2}-\theta \right) or 3=K(72.5θ)3=K(72.5-\theta ) ............... (ii) or 43=90θ72.5θ\frac{4}{3}=\frac{90-\theta }{72.5-\theta } or 2703θ=2904θ270-3\theta =290-4\theta or θ=290270  or θ=20C\theta =290-270~~or\text{ }\theta =20{}^\circ C .