Solveeit Logo

Question

Question: A convex lens refractive index \(1.5\) has a focal length \(18cm\) in air. Calculate it’s focal leng...

A convex lens refractive index 1.51.5 has a focal length 18cm18cm in air. Calculate it’s focal length when it is immersed in water of refractive index 43\dfrac{4}{3}. Take f1=18cm{{f}_{1}}=18cm.
A. f1 B. 2f1 C. 3f1 D. 4f1 \begin{aligned} & \text{A}\text{. }{{f}_{1}} \\\ & \text{B}\text{. }2{{f}_{1}} \\\ & \text{C}\text{. 3}{{\text{f}}_{\text{1}}} \\\ & \text{D}\text{. }4{{f}_{1}} \\\ \end{aligned}

Explanation

Solution

Use lens-makers formula to calculate the focal length in each case. Lens makers formula relates focal length with the refractive index of both lenses and the medium in which the lens is placed. As the radius of curvature remains constant when the lens is immersed in water so only the focal length of the lens is changed when it is immersed in water. After calculating the focal length in each case compare them to get the answer.

Formula used:
Lens makers formula is given by 1f=[μ2μ1μ1][1R11R2]\dfrac{1}{f}=\left[ \dfrac{{{\mu }_{2}}-{{\mu }_{1}}}{{{\mu }_{1}}} \right]\left[ \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right]
Where f= Focal length of lensf=\text{ Focal length of lens},μ2= Refractive index of the lens{{\mu }_{2}}=\text{ Refractive index of the lens},μ1= Refractive index of the medium in which lens is placed{{\mu }_{1}}=\text{ Refractive index of the medium in which lens is placed} R1 and R2 are the radius of curvature of both the curved surface of the lens.{{R}_{1}}\text{ and }{{R}_{2}}\text{ are the radius of curvature of both the curved surface of the lens}\text{.}

Complete step by step answer:
Lens makers formula gives a relationship between focal length of lens and refractive index of lens material and the radius of curvature of the two surfaces of the lens.The lens-makers formula for a convex lens with focal length ff , radius of curvature of both the curved surface R1 and R2{{R}_{1}}\text{ and }{{R}_{2}} and refractive index of lens μ2{{\mu }_{2}} when placed in the medium having refractive index μ1{{\mu }_{1}} is given by,

1f=[μ2μ1μ1][1R11R2]\dfrac{1}{f}=\left[ \dfrac{{{\mu }_{2}}-{{\mu }_{1}}}{{{\mu }_{1}}} \right]\left[ \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right]
Given the refractive index lens is, μ2=1.5=μg{{\mu }_{2}}=1.5={{\mu }_{g}}.

Case-I: When the lens is placed in air.

For air medium,μ1=1{{\mu }_{1}}=1
So focal length in this medium is given by 1fair=[μg1][1R11R2]\dfrac{1}{{{f}_{air}}}=\left[ {{\mu }_{g}}-1 \right]\left[ \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right]
Given fair=f1=18cm{{f}_{air}}={{f}_{1}}=18cm.

Case-II: When the lens is immersed in water.

Refractive index of water, μw=43{{\mu }_{w}}=\dfrac{4}{3}.
In water medium the focal length of the lens is given by

1fwater=[μgμwμw][1R11R2]\dfrac{1}{{{f}_{water}}}=\left[ \dfrac{{{\mu }_{g}}-{{\mu }_{w}}}{{{\mu }_{w}}} \right]\left[ \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right]
Now fwaterfair=[μg1][1R11R2][μgμwμw][1R11R2]\dfrac{{{f}_{water}}}{{{f}_{air}}}=\dfrac{\left[ {{\mu }_{g}}-1 \right]\left[ \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right]}{\left[ \dfrac{{{\mu }_{g}}-{{\mu }_{w}}}{{{\mu }_{w}}} \right]\left[ \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right]}
fwaterfair=[μg1][μgμwμw]\dfrac{{{f}_{water}}}{{{f}_{air}}}=\dfrac{\left[ {{\mu }_{g}}-1 \right]}{\left[ \dfrac{{{\mu }_{g}}-{{\mu }_{w}}}{{{\mu }_{w}}} \right]}

Putting the values of μg=1.5,μw=43 and fair=f1=18cm{{\mu }_{g}}=1.5,{{\mu }_{w}}=\dfrac{4}{3}\text{ and }{{f}_{air}}={{f}_{1}}=18cm in above equation. Then

fwaterf1=[1.51][1.54343]=0.5[4.544]=0.5[0.54]=0.5×40.5=4 fwater=4f1 \begin{aligned} & \dfrac{{{f}_{water}}}{{{f}_{1}}}=\dfrac{\left[ 1.5-1 \right]}{\left[ \dfrac{1.5-\dfrac{4}{3}}{\dfrac{4}{3}} \right]}=\dfrac{0.5}{\left[ \dfrac{4.5-4}{4} \right]}=\dfrac{0.5}{\left[ \dfrac{0.5}{4} \right]}=0.5\times \dfrac{4}{0.5}=4 \\\ & \Rightarrow {{f}_{water}}=4{{f}_{1}} \\\ \end{aligned}

Hence, the correct answer is option D.

Note:
In ray optics, sign convention plays a major role. In every scenario the sign convention should be taken into account. In calculating the focal length and radius of curvature of a lens maker's formula the sign convention and refractive index of lens and medium should be taken into consideration.