Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A convex lens of refractive index 32\frac{3}{2} has a power of 2.5D2.5\, D in air. If it is placed in a liquid of refractive index 22, then the new power of the lens is

A

- 1.25 D

B

- 1.5 D

C

1.25 D

D

1.5 D

Answer

- 1.25 D

Explanation

Solution

Focal length of a convex lens having power 2.5D,=12.5m2.5 D,=\frac{1}{2.5} m Also focal length of a lens in a medium of refractive index μ\mu is given by 1f=(μ1)(1R11R2)\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) 2.5=1f=(321)(1R11R2)(i)\Rightarrow 2.5=\frac{1}{f}=\left(\frac{3}{2}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \quad \ldots(i) \,\,\,\,\, (in air) 1f=(341)(1R11R2)(ii)[lμg=34]\Rightarrow \frac{1}{f'}=\left(\frac{3}{4}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \ldots(i i) \,\,\,\,\left[\because l \mu_{g}=\frac{3}{4}\right] (in liquid) Dividing the two, 2.5f=0.50.252.5 f '=\frac{0.5}{-0.25} 1f=525×0.25=1.25D\Rightarrow \frac{1}{f'}=\frac{-5}{25 \times 0.25}=-1.25 D