Solveeit Logo

Question

Question: A convex lens of radii of curvature 20 cm and 30 cm respectively. It is silvered at the surface whic...

A convex lens of radii of curvature 20 cm and 30 cm respectively. It is silvered at the surface which has smaller radius of curvature. Then if will behave as ():

A

Concave mirror with equivalent focal length 3011\frac { 30 } { 11 }cm

B

Concave mirror with equivalent focal length6011\frac { 60 } { 11 }cm

C

Concave mirror with equivalent focal length3011\frac { 30 } { 11 }cm.

D

Concave mirror with equivalent focal length6011\frac { 60 } { 11 }cm.

Answer

Concave mirror with equivalent focal length6011\frac { 60 } { 11 }cm

Explanation

Solution

: Focal length for lens

1fL=(μg1)(1R11R2)\frac { 1 } { \mathrm { f } _ { \mathrm { L } } } = \left( \mu _ { \mathrm { g } } - 1 \right) \left( \frac { 1 } { \mathrm { R } _ { 1 } } - \frac { 1 } { \mathrm { R } _ { 2 } } \right)

Here, ug=1.5,R1=20 cm,R2=30 cm\mathrm { u } _ { \mathrm { g } } = 1.5 , \mathrm { R } _ { 1 } = 20 \mathrm {~cm} , \mathrm { R } _ { 2 } = - 30 \mathrm {~cm}

=(1.51)(120130)=0.5×(560)= ( 1.5 - 1 ) \left( \frac { 1 } { 20 } - \frac { 1 } { - 30 } \right) = 0.5 \times \left( \frac { 5 } { 60 } \right)

or fL=1205=24 cm\mathrm { f } _ { \mathrm { L } } = \frac { 120 } { 5 } = 24 \mathrm {~cm}

Focal length for mirror

fm=R2=202=10 cmf _ { m } = \frac { R } { 2 } = \frac { - 20 } { 2 } = - 10 \mathrm {~cm}

\therefore Equivalent focal length

feq=6011 cm\Rightarrow \mathrm { f } _ { \mathrm { eq } } = \frac { - 60 } { 11 } \mathrm {~cm}

Hence, this system begaves like a concave mirror of focal length 6011 cm\frac { - 60 } { 11 } \mathrm {~cm}