Solveeit Logo

Question

Physics Question on Refraction of Light

A convex lens of focal length 10 cm and refractive index 1.5 is dipped in a liquid of refractive index 1.75. It will behave as

A

a convex lens of focal length 10 cm

B

a convex lens of focal length 35 cm

C

a concave lens of focal length 10 cm

D

a concave lens of focal length 35 cm

Answer

a concave lens of focal length 35 cm

Explanation

Solution

Given, focal length of convex lens, f=10cmf = 10\, cm
μlens=1.5\mu_{\text{lens}} = 1.5 and μliquid=1.75\mu_{\text{liquid}} = 1.75
As, lens maker?s formula
1f=(μlens1)[1R11R2]\frac{1}{f} = \left(\mu_{lens} -1\right) \left[\frac{1}{R_{1}} -\frac{1}{R_{2}}\right]
\because For a equi convex lens R1=RR_{1} = R and R2=RR_{2} = - R
1f=(μlens)[1R1(R)]\frac{1}{f} = \left(\mu_{lens}\right)\left[\frac{1}{R} -\frac{1}{\left(-R\right)}\right]
1f=(μlens1)2R\Rightarrow \frac{1}{f} = \left(\mu_{lens} -1\right) \frac{2}{R}
110=(1.51)2R\Rightarrow \frac{1}{10} = \left(1.5 -1\right) \frac{2}{R}
R=10cm\Rightarrow R =10 \,cm
If lens is dropped in liquid, then
1f=[μlensμliq1]2R\frac{1}{f'}=\left[\frac{\mu_{lens}}{\mu_{liq}} -1\right] \frac{2}{R}
1f=[1.51.751]210\Rightarrow \frac{1}{f'} = \left[\frac{1.5}{1.75} -1\right] \frac{2}{10}
f=35.71cm\Rightarrow f' = -35.71 \,cm
Hence, the lens behaves like a concave(negative focal length) lens of focal length 35cm.35 \,cm.