Solveeit Logo

Question

Question: A convex lens of focal length 0.2 m and made of glass ![](https://cdn.pureessence.tech/canvas_319.pn...

A convex lens of focal length 0.2 m and made of glass is immersed in water (aμw=1.33)\left( { } ^ { \mathrm { a } } \mu _ { \mathrm { w } } = 1.33 \right) .Find the change in the focal length of the lens:

A

5.8 m

B

0.58 Cm

C

0.58 m

D

5.8 cm

Answer

0.58 m

Explanation

Solution

: Using 1fa=(aμg)(1R11R2)\frac { 1 } { \mathrm { f } _ { \mathrm { a } } } = \left( { } ^ { \mathrm { a } } \mu _ { \mathrm { g } } \right) \left( \frac { 1 } { \mathrm { R } _ { 1 } } - \frac { 1 } { \mathrm { R } _ { 2 } } \right)

Here, fa=0.2 m,aμg=1.50\mathrm { f } _ { \mathrm { a } } = 0.2 \mathrm {~m} , { } ^ { \mathrm { a } } \mu _ { \mathrm { g } } = 1.50

10.2=(1.501)(1R11R2)=0.50(1R11R2)\therefore \frac { 1 } { 0.2 } = ( 1.50 - 1 ) \left( \frac { 1 } { \mathrm { R } _ { 1 } } - \frac { 1 } { \mathrm { R } _ { 2 } } \right) = 0.50 \left( \frac { 1 } { \mathrm { R } _ { 1 } } - \frac { 1 } { \mathrm { R } _ { 2 } } \right)

1R11R2=10\Rightarrow \frac { 1 } { \mathrm { R } _ { 1 } } - \frac { 1 } { \mathrm { R } _ { 2 } } = 10

Consider be the focal length of the lens, when immersed in water if be refractive index of glass w.r.t. water, then

Now,

Hence, change in focal length of the lens,