Solveeit Logo

Question

Physics Question on Spherical Mirrors

A convex lens made of glass has focal length 0.15m0.15\, m in air. If the refractive index of glass is 3/23/2, and that of water is 4/34/3 the focal length of lens when immersed in water is

A

0.15 m

B

0.30 m

C

0.6 m

D

0.45 m

Answer

0.6 m

Explanation

Solution

Given, fa=0.15m,μg=32,μw=43f_{a}=0.15 \,m , \mu_{g}=\frac{3}{2}, \mu_{w}=\frac{4}{3}
According to Lens maker's formula
1f=(μ1)(1R11R2)\frac{1}{f} =(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \,\,\,\,\,\, where μ=μLμM\mu=\frac{\mu_{L}}{\mu_{M}}
1fa=(μgμa1)(1R11R2)\frac{1}{f_{a}} =\left(\frac{\mu_{g}}{\mu_{a}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
=((3/2)11)C=\left(\frac{(3 / 2)}{1}-1\right) C\,\,\,\,\,\,\,\, where C=(1R11R2) C=\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
or 1fa=C2...(i)\,\,\,\frac{1}{f_{a}}=\frac{C}{2}\,\,\,\,\,\,\,\,...(i)
Also, 1fw=(μgμw1)(1R11R2)=((3/2)(4/3)1)C\frac{1}{f_{w}}=\left(\frac{\mu_{g}}{\mu_{w}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=\left(\frac{(3 / 2)}{(4 / 3)}-1\right) C
or 1fw=C8...(ii)\,\,\,\,\,\frac{1}{f_{w}}=\frac{C}{8}\,\,\,\,\,\,\,\,...(ii)
From Eqs. (i) and (ii), we get
fwfa=C2×8C=4\frac{f_{w}}{f_{a}}=\frac{C}{2} \times \frac{8}{C}=4
orfw=4fa\,\,\,\,\,\,f_{w}=4 f_{a}
=4×0.15=0.6m=4 \times 0.15=0.6\, m