Solveeit Logo

Question

Question: A convex lens in air produces a real image having the same size as object. When the object and the l...

A convex lens in air produces a real image having the same size as object. When the object and the lens are immersed in a liquid, the real image formed is enlarged three times the object size. Find the refractive index of the liquid. (μglass=1.5\mu_{glass}=1.5)

A

1211\frac{12}{11}

B

43\frac{4}{3}

C

98\frac{9}{8}

D

65\frac{6}{5}

Answer

98\frac{9}{8}

Explanation

Solution

Here's how to solve this problem:

1. Analyze the lens in air:

When a convex lens in air produces a real image of the same size as the object, it implies that the object is placed at twice the focal length (2Fa2F_a).

  • Magnification M=1M = -1 (real and inverted image).
  • Object distance u=2Fau = -2F_a.
  • Image distance v=2Fav = 2F_a.
  • The magnitude of the object distance is u=2Fa|u| = 2F_a.

The lens maker's formula for a lens in air is:

1Fa=(μg1)(1R11R2)(1)\frac{1}{F_a} = (\mu_g - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \quad (1)

Where FaF_a is the focal length in air, μg\mu_g is the refractive index of the glass (lens material), and R1,R2R_1, R_2 are the radii of curvature of the lens surfaces.

2. Analyze the lens in liquid:

When the object and the lens are immersed in a liquid, a real image is formed, enlarged three times the object size.

  • Magnification M=3M' = -3 (real and inverted image).

  • Let the new focal length in the liquid be FlF_l.

  • Let the object distance be uu' and the image distance be vv'.

  • From magnification formula: M=vu=3M' = \frac{v'}{u'} = -3. Since uu' is negative for a real object, vv' must be positive. So, v=3uv' = -3u'. (e.g., if u=xu' = -x', then v=3xv' = 3x').

  • Using the lens formula: 1v1u=1Fl\frac{1}{v'} - \frac{1}{u'} = \frac{1}{F_l}

    Substitute v=3uv' = -3u':

    13u1u=1Fl\frac{1}{-3u'} - \frac{1}{u'} = \frac{1}{F_l}

    133u=1Fl\frac{1 - 3}{-3u'} = \frac{1}{F_l}

    23u=1Fl\frac{-2}{-3u'} = \frac{1}{F_l}

    23u=1Fl\frac{2}{3u'} = \frac{1}{F_l}

    So, u=23Flu' = \frac{2}{3}F_l. (Note: Here uu' is used as the magnitude of object distance for simplicity in this step. If we stick to sign convention, u=23Flu' = - \frac{2}{3}F_l and v=2Flv' = 2F_l).

    Let's re-do this using u=xu' = -x' and v=3xv' = 3x' as in thought process.

    13x1(x)=1Fl\frac{1}{3x'} - \frac{1}{(-x')} = \frac{1}{F_l}

    13x+1x=1Fl\frac{1}{3x'} + \frac{1}{x'} = \frac{1}{F_l}

    1+33x=1Fl\frac{1+3}{3x'} = \frac{1}{F_l}

    43x=1Fl    x=43Fl\frac{4}{3x'} = \frac{1}{F_l} \implies x' = \frac{4}{3}F_l.

  • The magnitude of the object distance is u=43Fl|u'| = \frac{4}{3}F_l.

It is generally assumed that the object position relative to the lens remains the same unless specified otherwise. Therefore, we assume the object distance is the same in both cases:

u=u|u| = |u'|

2Fa=43Fl2F_a = \frac{4}{3}F_l

Fl=32Fa(2)F_l = \frac{3}{2}F_a \quad (2)

The lens maker's formula for a lens in liquid is:

1Fl=(μgμl1)(1R11R2)(3)\frac{1}{F_l} = \left(\frac{\mu_g}{\mu_l} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \quad (3)

Where μl\mu_l is the refractive index of the liquid.

3. Calculate the refractive index of the liquid (μl\mu_l):

Divide equation (3) by equation (1):

1/Fl1/Fa=(μgμl1)(μg1)\frac{1/F_l}{1/F_a} = \frac{\left(\frac{\mu_g}{\mu_l} - 1\right)}{(\mu_g - 1)}

FaFl=(μgμl1)(μg1)\frac{F_a}{F_l} = \frac{\left(\frac{\mu_g}{\mu_l} - 1\right)}{(\mu_g - 1)}

Substitute Fl=32FaF_l = \frac{3}{2}F_a from (2) into this equation:

Fa(3/2)Fa=(μgμl1)(μg1)\frac{F_a}{(3/2)F_a} = \frac{\left(\frac{\mu_g}{\mu_l} - 1\right)}{(\mu_g - 1)}

23=(1.5μl1)(μg1)\frac{2}{3} = \frac{\left(\frac{1.5}{\mu_l} - 1\right)}{(\mu_g - 1)}

Given μg=1.5\mu_g = 1.5.

23=(1.5μl1)(1.51)\frac{2}{3} = \frac{\left(\frac{1.5}{\mu_l} - 1\right)}{(1.5 - 1)}

23=(1.5μl1)0.5\frac{2}{3} = \frac{\left(\frac{1.5}{\mu_l} - 1\right)}{0.5}

Multiply both sides by 0.5:

0.5×23=1.5μl10.5 \times \frac{2}{3} = \frac{1.5}{\mu_l} - 1

13=1.5μl1\frac{1}{3} = \frac{1.5}{\mu_l} - 1

Add 1 to both sides:

13+1=1.5μl\frac{1}{3} + 1 = \frac{1.5}{\mu_l}

43=1.5μl\frac{4}{3} = \frac{1.5}{\mu_l}

Now, solve for μl\mu_l:

μl=1.5×34\mu_l = 1.5 \times \frac{3}{4}

μl=32×34\mu_l = \frac{3}{2} \times \frac{3}{4}

μl=98\mu_l = \frac{9}{8}

The refractive index of the liquid is 98\frac{9}{8}.