Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A convex lens has its radii of curvature equal. The focal length of the lens is ff. If it is divided vertically into two identical plano-convex lenses by cutting it, then the focal length of the plano-convex lens is (μ=(\mu= the refractive index of the material of the lens ))

A

f

B

f2\frac{f}{2}

C

2f

D

(μ1)f\left(\mu-1\right) f

Answer

2f

Explanation

Solution

The given, R1=R,R2=RR_{1}=R, R_{2}=-R f=Ff=F Lens Maker's formula 1F=(μ1)[1R11R2]\frac{1}{F}=(\mu-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right] 1f=(μ1)[1R+1R]\frac{1}{f}=(\mu-1)\left[\frac{1}{R}+\frac{1}{R}\right] f=R2(μ1)f=\frac{R}{2(\mu-1)} R=2f(μ1)...(i)R=2 f(\mu-1)\,\,\,...(i) Now, it is divided vertically into two identical plano convex lens 1f=(μ1)[1R11R2][R1=R,R2=]\frac{1}{f^{'}}=(\mu-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]\left[\because R_{1}=R, R_{2}=\infty\right] 1f1=(μ1)[1R1]\frac{1}{f_{1}}=(\mu-1)\left[\frac{1}{R}-\frac{1}{\infty}\right] f1=R(μ1)f_{1}=\frac{R}{(\mu-1)} f1=2f(μ1)(μ1)f_{1}=\frac{2 f(\mu-1)}{(\mu-1)} f1=2ff_{1}=2\, f