Solveeit Logo

Question

Question: A continuous random variable \(X\) has probability density function given by \[f\left( x \right) =...

A continuous random variable XX has probability density function given by

{\dfrac{k}{x}\,\,\,\,\,\,1 \leqslant x \leqslant 9} \\\ {0\,\,\,\,\,\,x < 1\,or\,x > 9} \end{array}} \right.$$ a. Find the value of $k.$ b. Find the mean and variance of $X$, giving your answer correct to three decimal places.
Explanation

Solution

In this question, we are going to find the value of kk and then to find mean and variance of XX.
First we are going to find the value of kk by using the probability density function.
Next we are going to find the mean and variance of XX for the probability density function.
Hence we can get the required solution.

Formula used: The probability density function is written in the form
f(x)dx=1\int\limits_{ - \infty }^\infty {f\left( x \right)dx = 1}
Mean of the probability density function is written as
μ=E(X)=xf(x)dx\mu = E\left( X \right) = \int\limits_{ - \infty }^\infty {xf\left( x \right)dx}
Variance of the probability density function is written as
σ2=Var(X)=E(X2)μ2{\sigma ^2} = Var\left( X \right) = E\left( {{X^2}} \right) - {\mu ^2}
σ2=x2f(x)dxμ2{\sigma ^2} = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx - {\mu ^2}}

Complete step by step solution:
In this question, we are going to find the value of kk and then find mean and variance of XX .
a.)First we are going to find the value of kk by using the probability density function.
Since f(x)f\left( x \right)is a probability density functionf(x)dx=1\int\limits_{ - \infty }^\infty {f\left( x \right)dx = 1}
That is 19f(x)dx=1\int\limits_1^9 {f\left( x \right)dx = 1}
Substitute the value of f(x)f\left( x \right)
19kxdx=1\Rightarrow \int\limits_1^9 {\dfrac{k}{x}dx = 1}
kkis a constant and it can be taken outside
k191xdx=1\Rightarrow k\int\limits_1^9 {\dfrac{1}{x}dx = 1}
Integration of 1xdx\dfrac{1}{x}dx is lnx+c\ln \left| x \right| + c
k[lnx+C]19=1\Rightarrow k\left[ {\ln \left| x \right| + C} \right]_1^9 = 1
Substitute the value of upper and lower limit in x,x, that is upper limit minus lower limit, we get
k[(ln9+C)(ln1+C)]=1\Rightarrow k\left[ {\left( {\ln \left| 9 \right| + C} \right) - \left( {\ln \left| 1 \right| + C} \right)} \right] = 1
k[2.19772]=1\Rightarrow k\left[ {2.19772} \right] = 1
k=12.19772\Rightarrow k = \dfrac{1}{{2.19772}}
k=0.45501\Rightarrow k = 0.45501
Hence we get the value of kk as 0.455010.45501
b.) now we are going to find the mean and variance of the probability density function.
μ=xf(x)dx\mu = \int\limits_{ - \infty }^\infty {xf\left( x \right)dx}
Substitute the value of f(x)f\left( x \right)
μ=19x×kxdx\Rightarrow \mu = \int\limits_1^9 {x \times \dfrac{k}{x}dx}
μ=19kdx\Rightarrow \mu = \int\limits_1^9 {kdx}
kkis a constant and it can be taken outside
μ=k19dx\Rightarrow \mu = k\int\limits_1^9 {dx}
μ=k[x+C]19\Rightarrow \mu = k\left[ {x + C} \right]_1^9
Substitute the value of upper and lower limit in x,x, that is upper limit minus lower limit, we get
μ=k[(9+C)(1+C)]\Rightarrow \mu = k\left[ {\left( {9 + C} \right) - \left( {1 + C} \right)} \right]
μ=k[8]\Rightarrow \mu = k\left[ 8 \right]
μ=(0.45501)[8]\Rightarrow \mu = \left( {0.45501} \right)\left[ 8 \right]
μ=3.64008\Rightarrow \mu = 3.64008
Hence we get the required mean value
\Rightarrow σ2=x2f(x)dxμ2{\sigma ^2} = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx - {\mu ^2}}
\Rightarrow E(X2)=x2f(x)dxE\left( {{X^2}} \right) = \int\limits_{ - \infty }^\infty {{x^2}f\left( x \right)dx}
Substitute the value of f(x)f\left( x \right)
\Rightarrow E(X2)=19x2kxdxE\left( {{X^2}} \right) = \int\limits_1^9 {{x^2}\dfrac{k}{x}dx}
\Rightarrow E(X2)=19kxdxE\left( {{X^2}} \right) = \int\limits_1^9 {kxdx}
kk is a constant and it can be taken outside
\Rightarrow E(X2)=k19xdxE\left( {{X^2}} \right) = k\int\limits_1^9 {xdx}
\Rightarrow E(X2)=k[x22]19E\left( {{X^2}} \right) = k\left[ {\dfrac{{{x^2}}}{2}} \right]_1^9
Substitute the value of upper and lower limit in x,x, that is upper limit minus lower limit, we get
\Rightarrow E(X2)=k[(922)122]E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{{9^2}}}{2}} \right) - \dfrac{{{1^2}}}{2}} \right]
Let us square the term and we get
\Rightarrow E(X2)=k[(812)12]E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{81}}{2}} \right) - \dfrac{1}{2}} \right]
On subtracting the term and we get
\Rightarrow E(X2)=k[(802)]E\left( {{X^2}} \right) = k\left[ {\left( {\dfrac{{80}}{2}} \right)} \right]
On rewriting the term and we get
\Rightarrow E(X2)=0.45501[(40)]E\left( {{X^2}} \right) = 0.45501\left[ {\left( {40} \right)} \right]
Let us multiply the term and we get,
\Rightarrow E(X2)=18.2004E\left( {{X^2}} \right) = 18.2004
Now,
\Rightarrow σ2=Var(X)=E(X2)μ2{\sigma ^2} = Var\left( X \right) = E\left( {{X^2}} \right) - {\mu ^2}
Let us putting the value and we get
\Rightarrow σ2=18.2004(3.64008)2{\sigma ^2} = 18.2004 - {\left( {3.64008} \right)^2}
On squaring the term and we get,
\Rightarrow σ2=18.200413.2501{\sigma ^2} = 18.2004 - 13.2501
Let us subtract the term and we get,
\Rightarrow σ2=4.9503{\sigma ^2} = 4.9503
Hence we get the required variance.

Therefore the required mean and variance for the probability density functions are 3.640083.64008 and 4.95034.9503.

Note: The probability density function has the following properties:
P(axb)=abf(x)dxP\left( {a \leqslant x \leqslant b} \right) = \int_a^b {f\left( x \right)dx}
It is non-negative for all real XX
The probabilities are measured over intervals and not a single point.