Solveeit Logo

Question

Question: A constant power P is applied to a particle of mass m. The distance traveled by the particle when it...

A constant power P is applied to a particle of mass m. The distance traveled by the particle when its velocity increases from v1 to v2 is (Neglect friction) :

A

3Pm(v22v12)\frac{3P}{m}(v_{2}^{2} - v_{1}^{2})

B

m3P(v2v1)\frac{m}{3P}(v_{2} - v_{1})

C

m3P(v23v13)\frac{m}{3P}(v_{2}^{3} - v_{1}^{3})

D

m3P(v22v12)\frac{m}{3P}(v_{2}^{2} - v_{1}^{2})

Answer

m3P(v23v13)\frac{m}{3P}(v_{2}^{3} - v_{1}^{3})

Explanation

Solution

Q P = Fv = mav = m(vdvds)\left( v\frac{dv}{ds} \right)v Ž v2dv = pm\frac{p}{m}ds

Žv1v2v2dv=pmosds\int_{v_{1}}^{v_{2}}{v^{2}dv} = \frac{p}{m}\int_{o}^{s}{ds}Žv23v133=pm\frac{v_{2}^{3} - v_{1}^{3}}{3} = \frac{p}{m}s Ž s = m3p(v23v13)\frac{m}{3p}(v_{2}^{3} - v_{1}^{3})