Solveeit Logo

Question

Physics Question on Vectors

A constant power is supplied to a rotating disc. The relationship between the angular velocity ω\omega of the disc and number of rotations (n) made by the disc is governed by

A

ωn13\omega\propto\,n^{\frac{1}{3}}

B

ωn23\omega\propto\,n^{\frac{2}{3}}

C

ωn32\omega\propto\,n^{\frac{3}{2}}

D

ωn2\omega\propto\,n^2

Answer

ωn13\omega\propto\,n^{\frac{1}{3}}

Explanation

Solution

Rotational energy =12Iω2= \frac 12 Iω^2

Rotational power =ddt(12Iω2)= \frac {d}{dt} (\frac 12 Iω^2)

Given that Rotational power is constant,
ddt(12Iω2)=K⇒ \frac {d}{dt} (\frac 12 Iω^2) = K (Constant)

d(12Iω2)=Kdt⇒ ∫d (\frac 12 Iω^2) = ∫K dt

12Iω2=Kt⇒ \frac 12 Iω^2 = Kt
So, ω2tω^2 ∝ t …….. (1)
But we know that,
ω=2πrntω = \frac {2\pi rn}{t} ……. (2)
From eq (1) and (2),
ω2nωω^2 ∝ \frac nω
ω3n⇒ ω^3 ∝ n
ωn13⇒ ω ∝ n^{\frac 13}

So, the correct option is (A): ωn13ω ∝ n^{\frac 13}