Solveeit Logo

Question

Physics Question on Moving charges and magnetism

A conductor (shown in the figure) carrying constant current II is kept in the xyx-y plane in a uniform magnetic field B\vec{B}. If FF is the magnitude of the total magnetic force acting on the conductor, then the correct statement(s) is(are)

A

If B\vec{B} is along z^\hat{z} , F \propto (L+R) (L + R)

B

If B\vec{B} is along x^\hat{x} , F=0F = 0

C

If B\vec{B} is along y^\hat{y} , F \propto (L + R)

D

If B\vec{B} is along z^\hat{z} , F=0F = 0

Answer

If B\vec{B} is along y^\hat{y} , F \propto (L + R)

Explanation

Solution

Option A if B is along z axis i.e Bk^\hat{k}
i=2i(L+R)i^\overrightarrow{i\ell} = 2i\left(L+R\right) \hat{i}
F=i×B?F=2i(L+R)i^?Bk^\vec{F} = \overrightarrow{i\ell}\times\vec{B}\quad\quad? F = 2i \left(L + R\right) \hat{i} ? \vec{B}\,\hat{k}
?F?(L+R)? F ? \left(L + R\right)\quad\quad option A is correct answer.
Option B if B is along x axis i.e Bi^\hat{i}
then F=2i(L+R)i^?(Bi^)=0F = 2i \left(L + R\right) \hat{i} ? \left(B\hat{i} \right) = 0\quad\quad option B is correct answer
Option C if B is along y axis i.e. Bj^ \hat{j}
then F=2i(L+R)i^?Bj^F = 2i \left(L + R\right) \hat{i} ? B \hat{j}
F?2i(L+R)B| F | ? 2i \left(L + R\right) B
?F?(L+R)? F ? \left(L + R\right)\quad\quad option (C)\left(C\right) is correct answer.