Solveeit Logo

Question

Physics Question on Electromagnetic induction

A conducting wire of parabolic shape, initially y=x2y = x^2, is moving with velocity V=V0i^\vec{V}=V_{0}\hat{i} a non-uniform magnetic field B=B0(1+(yL)β)k^,\vec{B}=B_{0}\left(1+\left(\frac{y}{L}\right)^{\beta}\right)\hat{k}, as shown in figure. If V0,B0,LV_0, B_0, L and β\beta are positive constants and Δϕ\Delta\phi is the potential difference developed between the ends of the wire, then the correct statement(s) is/are:

A

Δϕ=12B0V0L\left|\Delta \phi \right|=\frac{1}{2}B_{0}V_{0}L for β=0\beta=0

B

Δϕ=43B0V0Lforβ=2\left|\Delta \phi \right|=\frac{4}{3}B_{0}V_{0}L for \beta=2

C

Δϕ\left|\Delta \phi \right| remains the same if the parabolic wire is replaced by a straight wire, y=xy = x initially, of length 2L\sqrt{2}L

D

Δϕ\left|\Delta \phi \right| is proportional to the length of the wire projected on the yy -axis

Answer

Δϕ\left|\Delta \phi \right| is proportional to the length of the wire projected on the yy -axis

Explanation

Solution

y=x2,V=V0i^,B=B0(1+(y2)β)k^y=x^{2}, V=V_{0}\hat{i}, B=B_{0}\left(1+\left(\frac{y}{2}\right)^{\beta}\right)\hat{k}
end points are (0, 0) and (L,L)\left(\sqrt{L}, L\right)
Let at distance 'y' small length in y direction be dy
dε=V0Bdy\therefore d\varepsilon=V_{0}B\,dy
dε=V0B0(1+(yL)β)dy=V0B0\therefore d\varepsilon=V_{0}B_{0}\left(1+\left(\frac{y}{L}\right)^{\beta}\right)dy=V_{0}B_{0} [0Ly+yβ+1(β+1)Lβ]0L]\left[\int\limits^{{L}}_{{0}} y+\frac{y^{\beta+1}}{\left(\beta+1\right)L^{\beta}}]^{^{^L}}_{_{_{_0}}}\right]
ε=V0B0[L+Lβ+1(β+1)Lβ]ε=V0B0L(β+2β+1)\varepsilon=V_{0}B_{0}\left[L+\frac{L^{\beta+1}}{\left(\beta+1\right)L^{\beta}}\right] \Rightarrow \varepsilon=V_{0}B_{0}L\left(\frac{\beta+2}{\beta+1}\right)
If β=2\beta=2 then ε=V0B0L\varepsilon=V_{0}B_{0}L