Solveeit Logo

Question

Physics Question on Moving charges and magnetism

A conducting wire carrying current is arranged as shown. The magnetic field at O'O'

A

μ0i12[1R11R2]\frac{\mu_0 i}{12} \left[ \frac{1}{R_1} - \frac{1}{R_2} \right]

B

μ0i12[1R1+1R2]\frac{\mu_0 i}{12} \left[ \frac{1}{R_1} + \frac{1}{R_2} \right]

C

μ0i6[1R11R2]\frac{\mu_0 i}{6} \left[ \frac{1}{R_1} - \frac{1}{R_2} \right]

D

μ0i6[1R1+1R2]\frac{\mu_0 i}{6} \left[ \frac{1}{R_1} + \frac{1}{R_2} \right]

Answer

μ0i12[1R11R2]\frac{\mu_0 i}{12} \left[ \frac{1}{R_1} - \frac{1}{R_2} \right]

Explanation

Solution

Key Idea The magnetic field at the centre due to an arc carrying-current is given by the formula B=μ04π(iR)θB=\frac{\mu_{0}}{4 \pi}\left(\frac{i}{R}\right) \theta

Here, θ=60=π3\theta=60^{\circ}=\frac{\pi}{3}
The magnetic field due to R1R_{1} radius part.
B1=μ04π(iR1)π3B_{1}=\frac{\mu_{0}}{4 \pi}\left(\frac{i}{R_{1}}\right) \frac{\pi}{3}
Similarly due R2R_{2},
B2=μ04π(iR2)π3B_{2}=\frac{\mu_{0}}{4 \pi}\left(\frac{i}{R_{2}}\right) \frac{\pi}{3}
Net magnetic field,
=B=B1B2= B = B _{ 1 }- B _{2}
=μ04π(iR1)π3μ04π(iR2)π3=\frac{\mu_{0}}{4 \pi}\left(\frac{i}{R_{1}}\right) \frac{\pi}{3}-\frac{\mu_{0}}{4 \pi}\left(\frac{i}{R_{2}}\right) \frac{\pi}{3}
=μ04πiπ3(1R11R2)=\frac{\mu_{0}}{4 \pi} i \frac{\pi}{3}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
=μ0i12(1R11Rz)=\frac{\mu_{0} i}{12}\left(\frac{1}{ R _{1}}-\frac{1}{ R _{ z }}\right)