Solveeit Logo

Question

Physics Question on Magnetism and matter

A conducting rod ACAC of length 4l4 l is rotated about appoint OO in a uniform magnetic field B\vec{B} directed into the paper. AO=lAO=l and OC=3lOC=3l then:

A

VAVO=Bωl22V_{A}-V_{O}=\frac{B \omega l^{2}}{2}

B

VOVC=92Bωl2V_{O}-V_{C}=\frac{9}{2} B \omega l^{2}

C

VAVC=4Bωl2V_{A}-V_{C}=4 B \omega l^{2}

D

VCVO=92Bωl2V_{C}-V_{O}=\frac{9}{2} B \omega l^{2}

Answer

VAVO=Bωl22V_{A}-V_{O}=\frac{B \omega l^{2}}{2}

Explanation

Solution

Given, length of rod =4l=4 l; magnetic field =B=B If ω=\omega= angular velocity ω=vl(v=velocity).\omega=\frac{v}{l} \quad(v=v e l o c i t y) . Now, small emf (d ) due to small element de is: dϵ=Bvdl=Bwldld \epsilon=B vdl =B wl d l On integrating it upto length ' ll ' of rod, the emf (epsilon)(epsilon) will be: ε=Bω0lldl\varepsilon=B \omega \int_{0}^{l} l d l ε=Bωl22=\varepsilon=\frac{B \omega l^{2}}{2}= potential difference b/w A&0A \& 0. Thus, VAV0=Bωl22V_{A}-V_{0}=\frac{B \omega l^{2}}{2}