Solveeit Logo

Question

Physics Question on Electromagnetic induction

A conducting metal circular-wire-loop of radius rr is placed perpendicular to a magnetic field which varies with time as B=B0etτB=B_{0}e^{\frac{t}{\tau}}, where B0B_{0} and τ\tau are constants, at time t=0t = 0. If the resistance of the loop is RR then the heat generated in the loop after a long time (t)(t \rightarrow\infty) is

A

π2r4B042τR\frac{\pi^{2}r^{4}B_{0}^{4}}{2 \tau R}

B

π2r4B022τR\frac{\pi^{2}r^{4}B_{0}^{2}}{2 \tau R}

C

π2r4B02Rτ\frac{\pi^{2}r^{4}B_{0}^{2}R}{ \tau }

D

π2r4B02τR\frac{\pi^{2}r^{4}B^{2}_{0}}{ \tau R }

Answer

π2r4B022τR\frac{\pi^{2}r^{4}B_{0}^{2}}{2 \tau R}

Explanation

Solution

Here, B=B0etτB=B_{0}e^{\frac{t}{\tau}} Area of the circular loop, A=πr2A =\pi r^{2} Flux linked with the loop at any time, tt, ϕ=BA=πr2B0etτ\phi=BA=\pi r^{2}\,B_{0}e^{\frac{t}{\tau}} Emf induced in the loop, ε=dϕdt\varepsilon=-\frac{d\phi}{dt} =πr2B01τetτ=\pi r^{2}\, B_{0} \frac{1}{\tau}e^{-\frac{t}{\tau}} Net heat generated in the loop =0ε2Rdt=π2r4B02τ2R0e2tτdt=\int\limits_{0}^{\infty} \frac{\varepsilon^{2}}{R}dt =\frac{\pi^{2}r^{4}B_{0}^{2}}{\tau^{2}R} \int\limits_{0}^{\infty}e^{\frac{2t}{\tau}} dt =π2r4B02τ2R×1(2τ)×[e2tt]0=\frac{\pi^{2}r^{4}B_{0}^{2}}{\tau^{2}R}\times\frac{1}{\left(-\frac{2}{\tau}\right)}\times\left[e^{-\frac{2t}{t}}\right]_{0}^{\infty} =π2r4B022τ2R×τ(01)=\frac{-\pi^{2}r^{4}B_{0}^{2}}{2\tau^{2}R}\times\tau\left(0-1\right) =π2r4B022τR=\frac{\pi^{2}r^{4}B_{0}^{2}}{2\tau R}