Solveeit Logo

Question

Physics Question on Alternating current

A condenser of capacity CC is charged to a potential difference of V1V_1. The plates of the condenser are then connected to an ideal inductor of inductance LL. The current through the inductor when the potential difference across the condenser reduces to V2V_2 is

A

(C(V1V2)2L)12\bigg(\frac{C(V_1-V_2)^2}{L}\bigg)^\frac{1}{2}

B

C(V12V22)L\frac{C(V_1^2-V_2^2)}{L}

C

C(V12+V22)L\frac{C(V_1^2+V_2^2)}{L}

D

(C(V12V22)L)12\bigg(\frac{C(V_1^2-V_2^2)}{L}\bigg)^\frac{1}{2}

Answer

(C(V12V22)L)12\bigg(\frac{C(V_1^2-V_2^2)}{L}\bigg)^\frac{1}{2}

Explanation

Solution

In case of oscillatory discharge of a capacitor through an inductor, charge at instant t is given by
        q=q0cosωt\ \ \ \ \ \ \ \ q=q_0 cos\omega t
where, ω=1LC                       ...(i)\omega=\frac{1}{\sqrt{LC}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ...(i)
  cos ωt=CV2CV1=V2V1(q=CV)\therefore \ \ cos\ \omega t=\frac{CV_2}{CV_1}=\frac{V_2}{V_1} (\because q=CV)
Current through the inductor
     I=dqdt=ddt(q0cosωt)=q0ωsinωt\ \ \ \ \ I=\frac{dq}{dt}=\frac{d}{dt}(q_0 cos \omega t)=-q_0 \omega sin\omega t
     I=CV11LC[1cos2ωt]1/2\ \ \ \ \ |I|=CV_1\frac{1}{\sqrt{LC}}[1-cos^2 \omega t]^{1/2}
      =V1CL[1(V2V1)]1/2=[C(V12V22)L]12\ \ \ \\\ \ \ =V_1\sqrt\frac{C}{L}\bigg[1-\big(\frac{V_2}{V_1}\big)\bigg]^{1/2}=\bigg[\frac{C(V_1^2-V_2^2)}{L}\bigg]^\frac{1}{2}
(using (i))