Solveeit Logo

Question

Question: A concrete sphere of radius R has a cavity of radius r which s packed with sawdust. The specific gra...

A concrete sphere of radius R has a cavity of radius r which s packed with sawdust. The specific gravities of concrete and sawdust are respectively 2.4 and 0.3 for this sphere to float with its entire volume submerged under water. Ratio of mass of concrete to mass of sawdust will be

A

8

B

4

C

3

D

Zero

Answer

4

Explanation

Solution

Let specific gravities of concrete and saw dust are ρ1\rho _ { 1 } and

ρ2\rho _ { 2 } respectively. According to principle of floatation weight

of whole sphere = upthrust on the sphere

43π(R3r3)ρ1g+43πr3ρ2g=43πR3×1×g\frac { 4 } { 3 } \pi \left( R ^ { 3 } - r ^ { 3 } \right) \rho _ { 1 } g + \frac { 4 } { 3 } \pi r ^ { 3 } \rho _ { 2 } g = \frac { 4 } { 3 } \pi R ^ { 3 } \times 1 \times g

R3ρ1r3ρ1+r3ρ2=R3R ^ { 3 } \rho _ { 1 } - r ^ { 3 } \rho _ { 1 } + r ^ { 3 } \rho _ { 2 } = R ^ { 3 }

R3(ρ11)=r3(ρ1ρ2)R ^ { 3 } \left( \rho _ { 1 } - 1 \right) = r ^ { 3 } \left( \rho _ { 1 } - \rho _ { 2 } \right)R3r3=ρ1ρ2ρ11\frac { R ^ { 3 } } { r ^ { 3 } } = \frac { \rho _ { 1 } - \rho _ { 2 } } { \rho _ { 1 } - 1 }

R3r3r3=ρ1ρ2ρ1+1ρ11\frac { R ^ { 3 } - r ^ { 3 } } { r ^ { 3 } } = \frac { \rho _ { 1 } - \rho _ { 2 } - \rho _ { 1 } + 1 } { \rho _ { 1 } - 1 }

(R3r3)ρ1r3ρ2=(1ρ2ρ11)ρ1ρ2\frac { \left( R ^ { 3 } - r ^ { 3 } \right) \rho _ { 1 } } { r ^ { 3 } \rho _ { 2 } } = \left( \frac { 1 - \rho _ { 2 } } { \rho _ { 1 } - 1 } \right) \frac { \rho _ { 1 } } { \rho _ { 2 } }

 Mass of concrete  Mass of saw dust =(10.32.41)×2.40.3=4\frac { \text { Mass of concrete } } { \text { Mass of saw dust } } = \left( \frac { 1 - 0.3 } { 2.4 - 1 } \right) \times \frac { 2.4 } { 0.3 } = 4