Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

A complex number zz is the said to be unimodular if z=1.|z|=1 . Suppose z1z_{1} and z2z_{2} are complex number such that z12z22z1z2\frac{z_{1}-2 z_{2}}{2-z_{1} z_{2}} is unimodular and z2z _{2} is not unimodular. Then the point z1z_{1} lies on a :

A

Straight line parallel to x-axis

B

Straight line parallel to y-axis

C

Circle of radius 2

D

Circle of radius 2\sqrt{2}

Answer

Circle of radius 2

Explanation

Solution

z12z22z1zˉ2=1\left|\frac{z_{1}-2 z_{2}}{2-z_{1} \bar{z}_{2}}\right|=1
(z12z2)(zˉ12zˉ2)=(2z1zˉ2)(2zˉ1z2)\left(z_{1}-2 z_{2}\right)\left(\bar{z}_{1}-2 \bar{z}_{2}\right)=\left(2-z_{1} \bar{z}_{2}\right)\left(2-\bar{z}_{1} z_{2}\right)
z122z1zˉ22z2zˉ1+4z22\left|z_{1}\right|^{2}-2 z_{1} \bar{z}_{2}-2 z_{2} \bar{z}_{1}+4\left|z_{2}\right|^{2}
=42zˉ1z22z1zˉ2+z12z22=4-2 \bar{z}_{1} z_{2}-2 z_{1} \bar{z}_{2} +\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}
z12z22z124z22+4=0\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}-\left|z_{1}\right|^{2}-4\left|z_{2}\right|^{2}+4=0
(z124)(z221)=0\left(\left|z_{1}\right|^{2}-4\right)\left(\left|z_{2}\right|^{2}-1\right)=0
z1=2\Rightarrow\left|z_{1}\right|=2