Solveeit Logo

Question

Question: A complex number z is said to be unimodular if \(\left| z \right|=1\) . Suppose \({{z}_{1}}\) and \(...

A complex number z is said to be unimodular if z=1\left| z \right|=1 . Suppose z1{{z}_{1}} and z2{{z}_{2}} are complex numbers such that z12z22z1zˉ2\dfrac{{{z}_{1}}-2{{z}_{2}}}{2-{{z}_{1}}{{{\bar{z}}}_{2}}}is unimodular and z2{{z}_{2}} is not unimodular, then the point z1{{z}_{1}}lies on a :
( a ) straight line parallel to y – axis
( b ) circle of radius 2.
( c ) circle of radius 2\sqrt{2}
( d ) straight line parallel to x - axis

Explanation

Solution

What we will do in this question is, we will use properties of complex number such as z=x2+y2\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}, zzˉ=z2z\bar{z}={{\left| z \right|}^{2}}and property of unimodular which is z=1\left| z \right|=1to solve the question and break down the complex equation into a simpler form of equation.

Complete step-by-step answer:
Now, if z is unimodular then z=1\left| z \right|=1 and zzˉ=z2z\bar{z}={{\left| z \right|}^{2}}.
Now, in question it is given that z2{{z}_{2}}is not unimodular, so z21\left| {{z}_{2}} \right|\ne 1and also it is given that z12z22z1zˉ2\dfrac{{{z}_{1}}-2{{z}_{2}}}{2-{{z}_{1}}{{{\bar{z}}}_{2}}}is unimodular.
So, z12z22z1zˉ2=1\left| \dfrac{{{z}_{1}}-2{{z}_{2}}}{2-{{z}_{1}}{{{\bar{z}}}_{2}}} \right|=1
By cross multiplication, we get
z12z2=2z1zˉ2\left| {{z}_{1}}-2{{z}_{2}} \right|=\left| 2-{{z}_{1}}{{{\bar{z}}}_{2}} \right|
Squaring both side, we get
z12z22=2z1zˉ22{{\left| {{z}_{1}}-2{{z}_{2}} \right|}^{2}}={{\left| 2-{{z}_{1}}{{{\bar{z}}}_{2}} \right|}^{2}}
Using property, zzˉ=z2z\bar{z}={{\left| z \right|}^{2}}, we get
(z12z2)(zˉ12zˉ2)=(2z1zˉ2)(2z2zˉ1)\left( {{z}_{1}}-2{{z}_{2}} \right)\left( {{{\bar{z}}}_{1}}-2{{{\bar{z}}}_{2}} \right)=\left( 2-{{z}_{1}}{{{\bar{z}}}_{2}} \right)(2-{{z}_{2}}{{\bar{z}}_{1}})
On opening and solving brackets, we get
z1zˉ12z1zˉ22z2zˉ1+4z2zˉ2=42z2zˉ12z1zˉ2+z1zˉ1z2zˉ2{{z}_{1}}{{\bar{z}}_{1}}-2{{z}_{1}}{{\bar{z}}_{2}}-2{{z}_{2}}{{\bar{z}}_{1}}+4{{z}_{2}}{{\bar{z}}_{2}}=4-2{{z}_{2}}{{\bar{z}}_{1}}-2{{z}_{1}}{{\bar{z}}_{2}}+{{z}_{1}}{{\bar{z}}_{1}}\cdot {{z}_{2}}{{\bar{z}}_{2}}
On simplifying, we get
z1zˉ1+4z2zˉ2=4+z1zˉ1z2zˉ2{{z}_{1}}{{\bar{z}}_{1}}+4{{z}_{2}}{{\bar{z}}_{2}}=4+{{z}_{1}}{{\bar{z}}_{1}}\cdot {{z}_{2}}{{\bar{z}}_{2}}
Using, property, zzˉ=z2z\bar{z}={{\left| z \right|}^{2}}, we get
z12+4z22=4+z12z22{{\left| {{z}_{1}} \right|}^{2}}+4{{\left| {{z}_{2}} \right|}^{2}}=4+{{\left| {{z}_{1}} \right|}^{2}}\cdot {{\left| {{z}_{2}} \right|}^{2}}
Re – writing above equation, we get
z12z22+4z124z22=0{{\left| {{z}_{1}} \right|}^{2}}\cdot {{\left| {{z}_{2}} \right|}^{2}}+4-{{\left| {{z}_{1}} \right|}^{2}}-4{{\left| {{z}_{2}} \right|}^{2}}=0
Again,
z12z22+4z124z22=0{{\left| {{z}_{1}} \right|}^{2}}\cdot {{\left| {{z}_{2}} \right|}^{2}}+4-{{\left| {{z}_{1}} \right|}^{2}}-4{{\left| {{z}_{2}} \right|}^{2}}=0
z12(z221)4(z221)=0{{\left| {{z}_{1}} \right|}^{2}}\cdot ({{\left| {{z}_{2}} \right|}^{2}}-1)-4({{\left| {{z}_{2}} \right|}^{2}}-1)=0
(z124)(z221)=0({{\left| {{z}_{1}} \right|}^{2}}-4)\cdot ({{\left| {{z}_{2}} \right|}^{2}}-1)=0
As, in question it is given that z2{{z}_{2}}is not unimodular, so z21\left| {{z}_{2}} \right|\ne 1
So, (z221)0({{\left| {{z}_{2}} \right|}^{2}}-1)\ne 0
Thus, (z124)=0({{\left| {{z}_{1}} \right|}^{2}}-4)=0
z12=4{{\left| {{z}_{1}} \right|}^{2}}=4
Or, z1=2\left| {{z}_{1}} \right|=2
We know that , z=x2+y2\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}
So, z1=x2+y2=2\left| {{z}_{1}} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}=2
x2+y2=2\sqrt{{{x}^{2}}+{{y}^{2}}}=2
x2+y2=22{{x}^{2}}+{{y}^{2}}={{2}^{2}}, which is equation of a circle whose centre is ( 0, 0 ) and radius is 2 as general equation of circle whose center is ( h, k ) and radius is r is (xh)2+(yk)2=r2{{(x-h)}^{2}}+{{(y-k)}^{2}}={{r}^{2}}

So, the correct answer is “Option b”.

Note: These proving types of questions based on complex numbers are very tricky and lengthy so always put remembering formula and basic theory of complex numbers as priority. Always remember that if z = x + iy then z=x2+y2\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}, zzˉ=z2z\bar{z}={{\left| z \right|}^{2}} and general equation of circle whose centre is ( h, k ) and radius is r is (xh)2+(yk)2=r2{{(x-h)}^{2}}+{{(y-k)}^{2}}={{r}^{2}} . Try to avoid calculation mistakes else the solution will get wrong.