Solveeit Logo

Question

Physics Question on Magnetism and matter

A compass needle free to turn in a horizontal plane is placed at the centre of a circular coil of 3030 turns and radius 12cm12 \,cm. The coil is in a vertical plane making an angle of 4545^{\circ} with the magnetic meridian when the current in the coil is 0.35A0.35 \,A, the needle points west to east. Determine the horizontal component of earth's magnetic field at the location.

A

3.9×1073.9 \times 10^{-7} tesla

B

3.9×1053.9 \times 10^{-5} tesla

C

8.0×1058.0 \times 10^{-5} tesla

D

7.0×1077.0 \times 10^{-7} tesla

Answer

3.9×1053.9 \times 10^{-5} tesla

Explanation

Solution

Here, n=30n = 30, r=12cmr = 12 \,cm =12×102m = 12 \times 10^{-2}\, m. i=0.35Ai = 0.35 \,A, H=?H=? As it is clear from figure shown the needle can point west to east only when H=Bsin45H = B \,sin\, 45^{\circ} where, B=B = magnetic field strength due to current in coil =μ04π2πnir= \frac{\mu_{0}}{4\pi} \frac{2\pi ni}{r} H=μ04π2πnirsin45\therefore\quad H = \frac{\mu _{0}}{4\pi } \frac{2\pi ni}{r} \,sin\, 45^{\circ} =107×2π×30×0.3512×10212= 10^{-7} \times \frac{2\pi\times 30\times 0.35}{12 \times 10^{-2}} \cdot \frac{1}{\sqrt{2}} =2×227×30×3512×2×107= 2\times \frac{22}{7}\times \frac{30\times 35}{12\times \sqrt{2}} \times 10^{-7} =3.9×105= 3.9 \times 10^{-5} tesla