Question
Mathematics Question on Marginal Cost and Marginal Revenue
A company is selling a certain commodity ‘x’. The demand function for the commodity is linear. The company can sell 2000 units when the price is Rs. 8 per unit and it can sell 3000 units when the price is Rs. 4 per unit. The Marginal revenue at x = 5 is:
A
Rs. 79.98
B
Rs. 15.96
C
Rs. 16.04
D
Rs. 80.02
Answer
Rs. 15.96
Explanation
Solution
The demand function p(x) is linear. Using the points (2000,8) and (3000,4), find the slope m and intercept c:
m=3000−20004−8=1000−4=−0.004,c=8+2000(0.004)=16.
Thus, p(x)=−0.004x+16. Revenue R(x) is:
R(x)=x⋅p(x)=x(−0.004x+16)=−0.004x2+16x.
The Marginal Revenue is:
R′(x)=−0.008x+16.
At x=5:
R′(5)=−0.008(5)+16=−0.04+16=15.96.