Question
Mathematics Question on Conic sections
A common tangent to the conics x2=6y and 2x2−4y2=9 is:
A
x−y=23
B
x+y=1
C
x+y=29
D
x−y=1
Answer
x−y=23
Explanation
Solution
The correct answer is (A) : x−y=23
Let y=(mx+c) is tangent to x2=6y
Now , x2=6(mx+c)
So, x2−6mx−6c=0
Put D=b2−4ac=0
⇒c=2−3m2
∴ we get y=mx−23m2 .....(1)
and given hyperbola equation is 2x2−4y2=9
⇒29x2−49y2=1 ....(2)
Since, equation (1) is a tangent of equation (2) then c2=a2m2−b2
⇒49m4=9m2−49
⇒m4=2m2−1
⇒m4−2m2+1=0
⇒(m2−1)2=0
⇒$$m=±1
Therefore , for m=1 , equation of tangent is x−y=23