Solveeit Logo

Question

Mathematics Question on Conic sections

A common tangent to the conics x2=6yx^{2}=6y and 2x24y2=92x^{2}-4y^{2}=9 is:

A

xy=32x-y=\frac{3}{2}

B

x+y=1x + y =1

C

x+y=92x+y=\frac{9}{2}

D

xy=1x - y = 1

Answer

xy=32x-y=\frac{3}{2}

Explanation

Solution

The correct answer is (A) : xy=32x-y=\frac{3}{2}
Let y=(mx+c)y=(mx+c) is tangent to x2=6yx^2=6y
Now , x2=6(mx+c)x^2=6(mx+c)
So, x26mx6c=0x^2-6mx-6c=0
Put D=b24ac=0D=b^2-4ac=0
c=32m2⇒ c=\frac{-3}{2}m^2
\therefore we get y=mx32m2y=mx-\frac{3}{2}m^2 .....(1).....(1)
and given hyperbola equation is 2x24y2=92x^2-4y^2=9
x292y294=1⇒\frac{x^2}{\frac{9}{2}}-\frac{y^2}{\frac{9}{4}}=1 ....(2)....(2)
Since, equation (1) is a tangent of equation (2) then c2=a2m2b2c^2=a^2m^2-b^2
94m4=9m294⇒\frac{9}{4}m^4=9m^2-\frac{9}{4}
m4=2m21⇒m^4=2m^2-1
m42m2+1=0⇒m^4-2m^2+1=0
(m21)2=0⇒(m^2-1)^2=0
⇒$$m=±1
Therefore , for m=1 , equation of tangent is xy=32x-y=\frac{3}{2}