Solveeit Logo

Question

Question: A coin is tossed twice. If events A and B are defined as : A = head on first toss, \(B =\) head on...

A coin is tossed twice. If events A and B are defined as :

A = head on first toss, B=B = head on second toss. Then the probability of AB=A \cup B =

A

14\frac { 1 } { 4 }

B

12\frac { 1 } { 2 }

C

18\frac { 1 } { 8 }

D

34\frac { 3 } { 4 }

Answer

34\frac { 3 } { 4 }

Explanation

Solution

Total number of ways =(HH,HT,TH,TT)= ( H H , H T , T H , T T )

PP (Head on first toss) =24=12=P(A)= \frac { 2 } { 4 } = \frac { 1 } { 2 } = P ( A )

PP (Head on second toss) =24=12=P(B)= \frac { 2 } { 4 } = \frac { 1 } { 2 } = P ( B )

PP (Head on both toss) =14=P(AB)= \frac { 1 } { 4 } = P ( A \cap B )

Hence required probability is,

P(AB)=P(A)+P(B)P(AB)=12+1214=34P ( A \cup B ) = P ( A ) + P ( B ) - P ( A \cap B ) = \frac { 1 } { 2 } + \frac { 1 } { 2 } - \frac { 1 } { 4 } = \frac { 3 } { 4 } .