Solveeit Logo

Question

Question: A coin is tossed three times. Let X denote the number of times a tail follows a head. If $\mu$ and $...

A coin is tossed three times. Let X denote the number of times a tail follows a head. If μ\mu and σ2\sigma^2 denote the mean and variance of X, then the value of 64(μ+σ2\mu + \sigma^2) is :

A

51

B

48

C

32

D

64

Answer

48

Explanation

Solution

Solution Explanation:

Let the coin be tossed three times and label the tosses as T1,T2,T3T_1, T_2, T_3. Define indicator variables:

I1={1,if T1=H and T2=T0,otherwise,I2={1,if T2=H and T3=T0,otherwiseI_1 = \begin{cases}1, & \text{if } T_1 = H \text{ and } T_2 = T \\ 0, & \text{otherwise}\end{cases}, \quad I_2 = \begin{cases}1, & \text{if } T_2 = H \text{ and } T_3 = T \\ 0, & \text{otherwise}\end{cases}

Then, X=I1+I2X = I_1 + I_2.

Since the coin is fair:

E(I1)=E(I2)=P(H then T)=12×12=14.E(I_1) = E(I_2) = P(H \text{ then } T) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}.

Thus,

μ=E(X)=E(I1)+E(I2)=14+14=12.\mu = E(X) = E(I_1) + E(I_2) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.

For the variance, note:

Var(Ii)=14(114)=316for i=1,2.\operatorname{Var}(I_i) = \frac{1}{4}\left(1 - \frac{1}{4}\right) = \frac{3}{16} \quad \text{for } i=1,2.

Since I1I_1 and I2I_2 are dependent (they share toss T2T_2):

E(I1I2)=0(because T2 cannot be both T and H),E(I_1I_2) = 0 \quad \text{(because $T_2$ cannot be both $T$ and $H$)}, Cov(I1,I2)=E(I1I2)E(I1)E(I2)=01414=116.\operatorname{Cov}(I_1, I_2) = E(I_1I_2) - E(I_1)E(I_2) = 0 - \frac{1}{4}\cdot\frac{1}{4} = -\frac{1}{16}.

Thus,

σ2=Var(X)=Var(I1)+Var(I2)+2Cov(I1,I2)=316+316216=416=14.\sigma^2 = \operatorname{Var}(X) = \operatorname{Var}(I_1) + \operatorname{Var}(I_2) + 2\operatorname{Cov}(I_1, I_2) = \frac{3}{16} + \frac{3}{16} - \frac{2}{16} = \frac{4}{16} = \frac{1}{4}.

Finally,

μ+σ2=12+14=34,\mu + \sigma^2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}, 64(μ+σ2)=64×34=48.64(\mu + \sigma^2) = 64 \times \frac{3}{4} = 48.

Answer: 48 (Option 2)