Solveeit Logo

Question

Mathematics Question on Probability

A coin is tossed K times. If the probability of getting 3 heads is equal to the probability of getting 7 heads, then the probability of getting 8 tails is:

A

5512\frac{5}{512}

B

45221\frac{45}{2^{21}}

C

451024\frac{45}{1024}

D

210221\frac{210}{2^{21}}

Answer

451024\frac{45}{1024}

Explanation

Solution

The number of tosses KK satisfies the condition:
P(3 heads)=P(7 heads)P(3 \text{ heads}) = P(7 \text{ heads}).

The probability of rr heads in KK tosses is:
P(r)=(Kr)(12)KP(r) = {K \choose r} \left(\frac{1}{2}\right)^K.

Equating P(3)=P(7)P(3) = P(7):
(K3)=(K7){K \choose 3} = {K \choose 7}.

84=(K7)84 = {K \choose 7}.

From symmetry of binomial coefficients:
(K3)=(KK3)K3=7K=10{K \choose 3} = {K \choose K-3} \Rightarrow K-3 = 7 \Rightarrow K = 10.

The probability of getting 8 tails (or 2 heads) is:
P(8 tails)=(102)(12)10P(8 \text{ tails}) = {10 \choose 2} \left(\frac{1}{2}\right)^{10}.

P(8 tails)=109211024=451024P(8 \text{ tails}) = \frac{10 \cdot 9}{2} \cdot \frac{1}{1024} = \frac{45}{1024}.

Thus, the probability is 451024\frac{45}{1024}.