Solveeit Logo

Question

Physics Question on Alternating current

A coil of negligible resistance is connected in series with 90Ω90 \, \Omega resistor across 120V,60Hz120 \, \text{V}, \, 60 \, \text{Hz} supply. A voltmeter reads 36V36 \, \text{V} across resistance. Inductance of the coil is:

A

0.76H0.76 \, \text{H}

B

2.86H2.86 \, \text{H}

C

0.286H0.286 \, \text{H}

D

0.91H0.91 \, \text{H}

Answer

0.76H0.76 \, \text{H}

Explanation

Solution

The circuit contains a resistor (RR) and an inductor (LL) in series. The total voltage (VV) is the RMS voltage of the supply. The current in the circuit is:
Irms=VRR,I_{\text{rms}} = \frac{V_R}{R},
where VR=36VV_R = 36 \, \text{V} and R=90ΩR = 90 \, \Omega. Substituting:
Irms=3690=0.4A.I_{\text{rms}} = \frac{36}{90} = 0.4 \, \text{A}.
The total impedance of the circuit is:
Z=VIrms=1200.4=300Ω.Z = \frac{V}{I_{\text{rms}}} = \frac{120}{0.4} = 300 \, \Omega.
The impedance is related to the resistance and inductive reactance by:
Z=R2+XL2.Z = \sqrt{R^2 + X_L^2}.
Substituting Z=300ΩZ = 300 \, \Omega and R=90ΩR = 90 \, \Omega:
300=902+XL2.300 = \sqrt{90^2 + X_L^2}.
Squaring both sides:
3002=902+XL2    XL2=3002902=81900.300^2 = 90^2 + X_L^2 \implies X_L^2 = 300^2 - 90^2 = 81900.
Thus:
XL=81900286.18Ω.X_L = \sqrt{81900} \approx 286.18 \, \Omega.
The inductive reactance is given by:
XL=ωLwhereω=2πf.X_L = \omega L \quad \text{where} \quad \omega = 2\pi f.
For f=60Hzf = 60 \, \text{Hz}:
ω=2π60376.8rad/s.\omega = 2\pi \cdot 60 \approx 376.8 \, \text{rad/s}.
Solving for LL:
L=XLω=286.18376.80.76H.L = \frac{X_L}{\omega} = \frac{286.18}{376.8} \approx 0.76 \, \text{H}.
Thus, the inductance of the coil is:
L=0.76H.L = 0.76 \, \text{H}.