Solveeit Logo

Question

Physics Question on Electromagnetic induction

A coil of cross-sectional area A having n turns is placed in a uniform magnetic field B. When it is rotated with an angular velocity ω\omega, the maximum e.m.f. induced in the coil will be :

A

3nBAω 3 \, nB A \omega

B

32nBAω \frac{3}{2} \, nB A \omega

C

nBAω \, nB A \omega

D

12nBAω \frac{1}{2} \, nB A \omega

Answer

nBAω \, nB A \omega

Explanation

Solution

We know that flux through the coil is given by
flux through the coil
ϕ=nBAϕ=nBAcosθ\phi=n \vec{B} \cdot \vec{A} \Rightarrow \phi=n B A \cos \theta
ω=θtθ=ωt\omega=\frac{\theta}{t} \Rightarrow \theta=\omega t...(1)
ϕ=nBAcosωt\phi=n B A \cos \omega t
Therefore, emf induced in the coil is given by ε=ddtϕ\varepsilon=-\frac{d}{d t} \phi
So, ε=ddtnBAcosωt=nBA[sinωt]ω\varepsilon=-\frac{d}{d t} n B A \cos \omega t=-n B A[-\sin \omega t] \omega
ε=nBAωsinωt\varepsilon=n B A \omega \sin \omega t
For θ=ωt=0,sinωt=0ε=0\theta=\omega t=0, \sin \omega t=0\,\, \varepsilon=0
For θ=ωt=90,sinωt=1ε0=nBAω1\theta=\omega t=90, \sin \omega t=1\,\, \varepsilon_{0}=n B A \omega \cdot 1
ε=ε0sinωt\Rightarrow \varepsilon=\varepsilon_{0} \sin \omega t
Therefore ε0=BAnω\varepsilon_{0}=B A n \omega