Solveeit Logo

Question

Question: A coil having N turns is wound tightly in the form of a spiral with inner and outer radii a and b re...

A coil having N turns is wound tightly in the form of a spiral with inner and outer radii a and b respectively. When a current I passes through the coil, the magnetic field at the centre is-

A

μ0NIb\frac { \mu _ { 0 } \mathrm { NI } } { \mathrm { b } }

B

2μ0NIa\frac { 2 \mu _ { 0 } \mathrm { NI } } { \mathrm { a } }

C

μ0NI2( ba)\frac { \mu _ { 0 } \mathrm { NI } } { 2 ( \mathrm {~b} - \mathrm { a } ) } log ba\frac { \mathrm { b } } { \mathrm { a } }

D

μ0IN2( ba)\frac { \mu _ { 0 } \mathrm { IN } } { 2 ( \mathrm {~b} - \mathrm { a } ) } log ab\frac { \mathrm { a } } { \mathrm { b } }

Answer

μ0NI2( ba)\frac { \mu _ { 0 } \mathrm { NI } } { 2 ( \mathrm {~b} - \mathrm { a } ) } log ba\frac { \mathrm { b } } { \mathrm { a } }

Explanation

Solution

An element is assumed at distance x from center whose width is dx. No. of turns in width b-a = N

\f0 No. of turns is width dx = n =

dB = μ0ni2x\frac { \mu _ { 0 } \mathrm { ni } } { 2 \mathrm { x } } = μ0iN2(ba)dxx\frac { \mu _ { 0 } \mathrm { iN } } { 2 ( b - a ) } \frac { d x } { x }

B = μ0iN2(ba)abdxx\frac { \mu _ { 0 } \mathrm { i } N } { 2 ( b - a ) } \int _ { a } ^ { b } \frac { d x } { x } =