Solveeit Logo

Question

Question: A closed vessel contains 0.1 mole of a monoatomic ideal gas at 200 K . If 0.05 mole of the same ga...

A closed vessel contains 0.1 mole of a monoatomic ideal gas at 200 K . If 0.05 mole of the same gas at 400 K is added to it, the final equilibrium temperature (in K ) of the gas in the vessel will be close to ______

Answer

267

Explanation

Solution

The problem involves mixing two samples of the same monoatomic ideal gas at different temperatures in a closed vessel. Assuming no heat exchange with the surroundings, the total internal energy of the system remains conserved.

For an ideal gas, the internal energy UU is given by: U=nCvTU = nC_vT For a monoatomic ideal gas, the molar heat capacity at constant volume is Cv=32RC_v = \frac{3}{2}R. So, the internal energy can be written as: U=n(32R)TU = n \left(\frac{3}{2}R\right) T

Let's denote the initial state of the first gas sample as (1) and the second gas sample as (2).

For gas 1: Number of moles, n1=0.1n_1 = 0.1 mol Initial temperature, T1=200T_1 = 200 K Initial internal energy, U1=n1(32R)T1U_1 = n_1 \left(\frac{3}{2}R\right) T_1

For gas 2: Number of moles, n2=0.05n_2 = 0.05 mol Initial temperature, T2=400T_2 = 400 K Initial internal energy, U2=n2(32R)T2U_2 = n_2 \left(\frac{3}{2}R\right) T_2

When the two gases are mixed, they reach a final equilibrium temperature, TfT_f. The total number of moles in the final mixture is ntotal=n1+n2n_{total} = n_1 + n_2. The final internal energy of the mixture is Ufinal=(n1+n2)(32R)TfU_{final} = (n_1 + n_2) \left(\frac{3}{2}R\right) T_f.

According to the conservation of internal energy: Uinitial=UfinalU_{initial} = U_{final} U1+U2=UfinalU_1 + U_2 = U_{final} n1(32R)T1+n2(32R)T2=(n1+n2)(32R)Tfn_1 \left(\frac{3}{2}R\right) T_1 + n_2 \left(\frac{3}{2}R\right) T_2 = (n_1 + n_2) \left(\frac{3}{2}R\right) T_f

We can cancel the common term (32R)\left(\frac{3}{2}R\right) from both sides: n1T1+n2T2=(n1+n2)Tfn_1 T_1 + n_2 T_2 = (n_1 + n_2) T_f

Now, solve for TfT_f: Tf=n1T1+n2T2n1+n2T_f = \frac{n_1 T_1 + n_2 T_2}{n_1 + n_2}

Substitute the given values: Tf=(0.1 mol×200 K)+(0.05 mol×400 K)0.1 mol+0.05 molT_f = \frac{(0.1 \text{ mol} \times 200 \text{ K}) + (0.05 \text{ mol} \times 400 \text{ K})}{0.1 \text{ mol} + 0.05 \text{ mol}} Tf=20 K+20 K0.15 molT_f = \frac{20 \text{ K} + 20 \text{ K}}{0.15 \text{ mol}} Tf=400.15T_f = \frac{40}{0.15} Tf=400015T_f = \frac{4000}{15} Tf=8003T_f = \frac{800}{3} Tf266.67 KT_f \approx 266.67 \text{ K}

Rounding to the nearest integer, the final equilibrium temperature is approximately 267 K.