Solveeit Logo

Question

Question: A circular uniform disc of radius $r=2m$, mass $M=2kg$ and uniform charge distribution $\sigma=2C/m^...

A circular uniform disc of radius r=2mr=2m, mass M=2kgM=2kg and uniform charge distribution σ=2C/m2\sigma=2C/m^2 is initially at rest. A uniform magnetic field of initial value B0=0.2TB_0=0.2T, perpendicular to the plane of the disc, exists in a circular region of radius a=1ma=1m, concentric with the disc. The magnetic field is then switched off and uniformly decreases from B0B_0 to zero in time τ\tau. Assuming that the disc is free to rotate about its center, find the angular velocity of the disc.

Answer

0.175π rad/s

Explanation

Solution

The problem asks us to find the final angular velocity of a charged disc that starts rotating due to an induced electric field when a perpendicular magnetic field decreases.

1. Induced Electric Field (E):

A changing magnetic flux induces an electric field. According to Faraday's Law: Edl=dΦBdt\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}

The magnetic field BB is uniform within a radius aa and zero outside. It decreases uniformly from B0B_0 to 00 in time τ\tau. So, dBdt=B0τ\frac{dB}{dt} = -\frac{B_0}{\tau}.

Consider a circular path of radius xx concentric with the disc. Due to symmetry, the induced electric field E\vec{E} will be tangential and uniform in magnitude along this path.

  • For xax \le a (inside the magnetic field region): The magnetic flux is ΦB=B(πx2)\Phi_B = B \cdot (\pi x^2). E(2πx)=ddt(Bπx2)=πx2dBdtE(2\pi x) = -\frac{d}{dt}(B\pi x^2) = -\pi x^2 \frac{dB}{dt} E1=x2dBdt=x2(B0τ)=B0x2τE_1 = -\frac{x}{2} \frac{dB}{dt} = -\frac{x}{2} \left(-\frac{B_0}{\tau}\right) = \frac{B_0 x}{2\tau}

  • For x>ax > a (outside the magnetic field region, but within the disc): The magnetic flux is ΦB=B(πa2)\Phi_B = B \cdot (\pi a^2) (as the field only extends to radius aa). E(2πx)=ddt(Bπa2)=πa2dBdtE(2\pi x) = -\frac{d}{dt}(B\pi a^2) = -\pi a^2 \frac{dB}{dt} E2=a22xdBdt=a22x(B0τ)=B0a22xτE_2 = -\frac{a^2}{2x} \frac{dB}{dt} = -\frac{a^2}{2x} \left(-\frac{B_0}{\tau}\right) = \frac{B_0 a^2}{2x\tau}

2. Torque on the Disc (τ):

The disc has a uniform charge distribution σ\sigma. Consider an elemental ring of radius xx and thickness dxdx. The charge on this ring is dq=σ(2πxdx)dq = \sigma (2\pi x dx). The force on this elemental charge is dF=Edq=E(σ2πxdx)dF = E dq = E (\sigma 2\pi x dx). The torque due to this force about the center is dτ=xdF=xE(σ2πxdx)d\tau = x dF = x E (\sigma 2\pi x dx).

We integrate this torque from x=0x=0 to x=rx=r. Since the expression for EE changes at x=ax=a, we integrate in two parts:

  • For 0xa0 \le x \le a: dτ1=x(B0x2τ)(σ2πxdx)=πσB0τx3dxd\tau_1 = x \left(\frac{B_0 x}{2\tau}\right) (\sigma 2\pi x dx) = \frac{\pi \sigma B_0}{\tau} x^3 dx τ1=0aπσB0τx3dx=πσB0τ[x44]0a=πσB0a44τ\tau_1 = \int_0^a \frac{\pi \sigma B_0}{\tau} x^3 dx = \frac{\pi \sigma B_0}{\tau} \left[\frac{x^4}{4}\right]_0^a = \frac{\pi \sigma B_0 a^4}{4\tau}

  • For a<xra < x \le r: dτ2=x(B0a22xτ)(σ2πxdx)=πσB0a2τxdxd\tau_2 = x \left(\frac{B_0 a^2}{2x\tau}\right) (\sigma 2\pi x dx) = \frac{\pi \sigma B_0 a^2}{\tau} x dx τ2=arπσB0a2τxdx=πσB0a2τ[x22]ar=πσB0a22τ(r2a2)\tau_2 = \int_a^r \frac{\pi \sigma B_0 a^2}{\tau} x dx = \frac{\pi \sigma B_0 a^2}{\tau} \left[\frac{x^2}{2}\right]_a^r = \frac{\pi \sigma B_0 a^2}{2\tau} (r^2 - a^2)

The total torque acting on the disc is τtotal=τ1+τ2\tau_{total} = \tau_1 + \tau_2: τtotal=πσB0a44τ+πσB0a22τ(r2a2)\tau_{total} = \frac{\pi \sigma B_0 a^4}{4\tau} + \frac{\pi \sigma B_0 a^2}{2\tau} (r^2 - a^2) τtotal=πσB0a24τ[a2+2(r2a2)]\tau_{total} = \frac{\pi \sigma B_0 a^2}{4\tau} [a^2 + 2(r^2 - a^2)] τtotal=πσB0a24τ[a2+2r22a2]\tau_{total} = \frac{\pi \sigma B_0 a^2}{4\tau} [a^2 + 2r^2 - 2a^2] τtotal=πσB0a24τ(2r2a2)\tau_{total} = \frac{\pi \sigma B_0 a^2}{4\tau} (2r^2 - a^2)

3. Angular Impulse-Momentum Theorem:

The change in angular momentum of the disc is equal to the angular impulse applied by the torque. Since the torque is constant over the time τ\tau (because dBdt\frac{dB}{dt} is constant), the angular impulse Jθ=τtotalτJ_\theta = \tau_{total} \cdot \tau. Jθ=(πσB0a24τ(2r2a2))τ=πσB0a24(2r2a2)J_\theta = \left(\frac{\pi \sigma B_0 a^2}{4\tau} (2r^2 - a^2)\right) \cdot \tau = \frac{\pi \sigma B_0 a^2}{4} (2r^2 - a^2)

The initial angular momentum of the disc is Li=0L_i = 0 (since it's at rest). The final angular momentum is Lf=IωL_f = I\omega, where II is the moment of inertia of the disc and ω\omega is its final angular velocity. For a uniform disc, I=12Mr2I = \frac{1}{2} M r^2.

According to the angular impulse-momentum theorem, LfLi=JθL_f - L_i = J_\theta: Iω0=JθI\omega - 0 = J_\theta 12Mr2ω=πσB0a24(2r2a2)\frac{1}{2} M r^2 \omega = \frac{\pi \sigma B_0 a^2}{4} (2r^2 - a^2)

Solving for ω\omega: ω=πσB0a2(2r2a2)2Mr2\omega = \frac{\pi \sigma B_0 a^2 (2r^2 - a^2)}{2 M r^2}

4. Substitute the given values: r=2mr = 2m M=2kgM = 2kg σ=2C/m2\sigma = 2C/m^2 B0=0.2TB_0 = 0.2T a=1ma = 1m

ω=π(2)(0.2)(1)2(2(2)2(1)2)2(2)(2)2\omega = \frac{\pi (2) (0.2) (1)^2 (2(2)^2 - (1)^2)}{2 (2) (2)^2} ω=π(0.4)(1)(2(4)1)4(4)\omega = \frac{\pi (0.4) (1) (2(4) - 1)}{4 (4)} ω=π(0.4)(81)16\omega = \frac{\pi (0.4) (8 - 1)}{16} ω=π(0.4)(7)16\omega = \frac{\pi (0.4) (7)}{16} ω=2.8π16\omega = \frac{2.8\pi}{16} ω=7π40\omega = \frac{7\pi}{40} rad/s ω=0.175π\omega = 0.175\pi rad/s

The direction of rotation will be clockwise, as the decreasing magnetic field (into the page) induces a clockwise electric field, which exerts a clockwise force on the positive charges.