Solveeit Logo

Question

Physics Question on rotational motion

A circular table is rotating with an angular velocity of ωrad/s\omega \, \text{rad/s} about its axis (see figure). There is a smooth groove along a radial direction on the table. A steel ball is gently placed at a distance of 1m1 \, \text{m} on the groove. All the surfaces are smooth. If the radius of the table is 3m3 \, \text{m}, the radial velocity of the ball with respect to the table at the time the ball leaves the table is x2ωm/sx\sqrt{2}\omega \, \text{m/s}, where the value of xx is \dots.

Answer

The centripetal acceleration acting on the ball is:
ac=ω2x.a_c = \omega^2 x.
Using the relationship between velocity and position:
vdvdx=ω2x.v \frac{dv}{dx} = \omega^2 x.
Integrate both sides:
0vvdv=13ω2xdx.\int_0^v v \, dv = \int_1^3 \omega^2 x \, dx.
Solve the integrals:
v22=ω213xdx=ω2[x22]13.\frac{v^2}{2} = \omega^2 \int_1^3 x \, dx = \omega^2 \left[\frac{x^2}{2}\right]_1^3.
Substitute the limits:
v22=ω2×12[3212].\frac{v^2}{2} = \omega^2 \times \frac{1}{2} \left[3^2 - 1^2\right].
Simplify:
v22=ω2×12×(91)=ω2×12×8=4ω2.\frac{v^2}{2} = \omega^2 \times \frac{1}{2} \times (9 - 1) = \omega^2 \times \frac{1}{2} \times 8 = 4\omega^2.
Solve for vv:
v2=8ω2    v=8ω=22ω.v^2 = 8\omega^2 \implies v = \sqrt{8}\omega = 2\sqrt{2}\omega.
Thus, the radial velocity of the ball as it leaves the table is:
v=22ω,v = 2\sqrt{2}\omega,
where x=2x = 2.

Explanation

Solution

The centripetal acceleration acting on the ball is:
ac=ω2x.a_c = \omega^2 x.
Using the relationship between velocity and position:
vdvdx=ω2x.v \frac{dv}{dx} = \omega^2 x.
Integrate both sides:
0vvdv=13ω2xdx.\int_0^v v \, dv = \int_1^3 \omega^2 x \, dx.
Solve the integrals:
v22=ω213xdx=ω2[x22]13.\frac{v^2}{2} = \omega^2 \int_1^3 x \, dx = \omega^2 \left[\frac{x^2}{2}\right]_1^3.
Substitute the limits:
v22=ω2×12[3212].\frac{v^2}{2} = \omega^2 \times \frac{1}{2} \left[3^2 - 1^2\right].
Simplify:
v22=ω2×12×(91)=ω2×12×8=4ω2.\frac{v^2}{2} = \omega^2 \times \frac{1}{2} \times (9 - 1) = \omega^2 \times \frac{1}{2} \times 8 = 4\omega^2.
Solve for vv:
v2=8ω2    v=8ω=22ω.v^2 = 8\omega^2 \implies v = \sqrt{8}\omega = 2\sqrt{2}\omega.
Thus, the radial velocity of the ball as it leaves the table is:
v=22ω,v = 2\sqrt{2}\omega,
where x=2x = 2.