Solveeit Logo

Question

Question: A circular ring of radius R and uniform linear charge density + l coulomb/metre are kept in x-y plan...

A circular ring of radius R and uniform linear charge density + l coulomb/metre are kept in x-y plane with its centre at origin. Electric field at point (0,0,R2)\left( 0,0,\frac{R}{\sqrt{2}} \right)is-

A

λ33ε0R\frac{\lambda}{3\sqrt{3}\varepsilon_{0}R}

B

2λ33R2\frac{2\lambda}{3\sqrt{3}R^{2}}

C

233\frac { 2 } { 3 \sqrt { 3 } } λε0R\frac{\lambda}{\varepsilon_{0}R}

D

None of these

Answer

λ33ε0R\frac{\lambda}{3\sqrt{3}\varepsilon_{0}R}

Explanation

Solution

Eaxis = 14πε0\frac { 1 } { 4 \pi \varepsilon _ { 0 } } qz(R2+z2)3/2\frac { \mathrm { qz } } { \left( \mathrm { R } ^ { 2 } + \mathrm { z } ^ { 2 } \right) ^ { 3 / 2 } } , at z =R2\frac { \mathrm { R } } { \sqrt { 2 } }

Eaxis = 233\frac { 2 } { 3 \sqrt { 3 } } 14πε0\frac { 1 } { 4 \pi \varepsilon _ { 0 } } qR2\frac { \mathrm { q } } { \mathrm { R } ^ { 2 } }

= 233\frac { 2 } { 3 \sqrt { 3 } } .14πε0\frac { 1 } { 4 \pi \varepsilon _ { 0 } }. λ.2πRR2\frac { \lambda .2 \pi \mathrm { R } } { \mathrm { R } ^ { 2 } } = λ33ε0R\frac { \lambda } { 3 \sqrt { 3 } \varepsilon _ { 0 } R }