Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A circular disk of moment of inertia it is rotating in a horizontal plane, about its symmetry axis, with a constant angular speed ωi\omega_i. Another disk of moment of inertia IbI_b is dropped coaxially onto the rotating disk. Initially the second disk has zero angular speed. Eventually both the disks rotate with a constant angular speed ωf\omega_f. The energy lost by the initially rotating disc to friction is

A

12Ib2(It+Ib)ωi2\frac{1}{2}\frac{I^2_b}{(I_t+I_b)}\omega^2_i

B

12It22(It+Ib)ωi2\frac{1}{2}\frac{I^2_t}{2(I_t+I_b)}\omega^2_i

C

IbIt(It+Ib)ωi2\frac{I_b-I_t}{(I_t+I_b)}\omega^2_i

D

12IbIt(It+Ib)ωi2\frac{1}{2}\frac{I_bI_t}{(I_t+I_b)}\omega^2_i

Answer

12IbIt(It+Ib)ωi2\frac{1}{2}\frac{I_bI_t}{(I_t+I_b)}\omega^2_i

Explanation

Solution

As no external torque is applied to the system, the angular momentum of the system remains conserved.
Li=Lf\therefore L_i=L_f
According to given problem,
Itωi=(It+Ib)ωfI_t\omega_i=(I_t+I_b)\omega_f
or \omega_f=\frac{I_t\omega_i}{(I_t+I_b)}\hspace25mm ...(i)
Initial energy, E_i=\frac{1}{2}I_t\omega^2_i\hspace25mm ...(ii)
Final energy, E_f=\frac{1}{2}(I_t+I_b)\omega^2_f\hspace25mm ...(iii)
Substituting the value of ωf\omega_f from equation (i) in equation (iii), we get
Final energy, Ef=12(It+Ib)(IiωiIt+Ib)2E_f=\frac{1}{2}(I_t+I_b)\Big(\frac{I_i\omega_i}{I_t+I_b}\Big)^2
=\frac{1}{2}\frac{I^2_t\omega^2_i}{2(I_t+I_b)}\hspace15mm ...(iv)
Loss of energy, ΔE=EiEf\Delta E=E_i-E_f
12Itωi212It2ωi2It+Ib\frac{1}{2}I_t\omega^2_i-\frac{1}{2}\frac{I^2_t\omega^2_i}{I_t+I_b} (Using (ii) and (iv))
ωi22(ItIt2(It+Ib))=ωi22(It2+IbIt2It2(It+Ib))\frac{\omega^2_i}{2}\Bigg(I_t-\frac{I^2_t}{(I_t+I_b)}\Bigg)=\frac{\omega^2_i}{2}\Bigg(\frac{I^2_t+I_b I^2_t-I^2_t}{(I_t+I_b)}\Bigg)
=12IbIt(It+Ib)ωi2=\frac{1}{2}\frac{I_b I_t}{(I_t + I_b)}\omega^2_i