Solveeit Logo

Question

Question: A circular disc X of radius R is made from an iron plate of thickness t, and another disc Y of radiu...

A circular disc X of radius R is made from an iron plate of thickness t, and another disc Y of radius 4R is made from an iron plate of thickness t4\frac { t } { 4 } . Then the relation between the moment of inertia IX and IY is

A

IY = 64IX

B

IY = 32IX

C

IY = 16IX

D

IY = IX

Answer

IY = 64IX

Explanation

Solution

Moment of Inertia of disc I = 12MR2\frac { 1 } { 2 } M R ^ { 2 } =12(πR2tρ)R2= \frac { 1 } { 2 } \left( \pi R ^ { 2 } t \rho \right) R ^ { 2 } =12πtρR4= \frac { 1 } { 2 } \pi t \rho R ^ { 4 }

[As M=V×ρM = V \times \rho= where t=t = thickness, ρ = density]

IyIx=tytx(RyRx)4\frac { I _ { y } } { I _ { x } } = \frac { t _ { y } } { t _ { x } } \left( \frac { R _ { y } } { R _ { x } } \right) ^ { 4 }

[If ρ\rho = constant]

IyIx=14(4)4=64\frac { I _ { y } } { I _ { x } } = \frac { 1 } { 4 } ( 4 ) ^ { 4 } = 64 [GivenRy=4RxR _ { y } = 4 R _ { x }, ty=tx4t _ { y } = \frac { t _ { x } } { 4 }]

Iy=64IxI _ { y } = 64 I _ { x }