Solveeit Logo

Question

Physics Question on rotational motion

A circular disc reaches from top to bottom of an inclined plane of length ll. When it slips down the plane, it takes tt s. When it rolls down the plane, then it takes (α2)1/2ts,\left( \frac{\alpha}{2} \right)^{1/2} t \, \text{s}, where α\alpha is __________ .

Answer

For slipping, acceleration as=gsinθa_s = g \sin \theta. For rolling, acceleration ar=gsinθ1+k2/r2a_r = \frac{g \sin \theta}{1 + k^2/r^2}, where k=r/2k = r/\sqrt{2} (for a disc):
ar=gsinθ1+0.5=2gsinθ3.a_r = \frac{g \sin \theta}{1 + 0.5} = \frac{2g \sin \theta}{3}.
Time ratio:
trts=asar=gsinθ2gsinθ3=32.\frac{t_r}{t_s} = \sqrt{\frac{a_s}{a_r}} = \sqrt{\frac{g \sin \theta}{\frac{2g \sin \theta}{3}}} = \sqrt{\frac{3}{2}}.
Given tr=α2tst_r = \sqrt{\frac{\alpha}{2}} t_s, equating:
α2=32,α=3.\sqrt{\frac{\alpha}{2}} = \sqrt{\frac{3}{2}}, \quad \alpha = 3.

Explanation

Solution

For slipping, acceleration as=gsinθa_s = g \sin \theta. For rolling, acceleration ar=gsinθ1+k2/r2a_r = \frac{g \sin \theta}{1 + k^2/r^2}, where k=r/2k = r/\sqrt{2} (for a disc):
ar=gsinθ1+0.5=2gsinθ3.a_r = \frac{g \sin \theta}{1 + 0.5} = \frac{2g \sin \theta}{3}.
Time ratio:
trts=asar=gsinθ2gsinθ3=32.\frac{t_r}{t_s} = \sqrt{\frac{a_s}{a_r}} = \sqrt{\frac{g \sin \theta}{\frac{2g \sin \theta}{3}}} = \sqrt{\frac{3}{2}}.
Given tr=α2tst_r = \sqrt{\frac{\alpha}{2}} t_s, equating:
α2=32,α=3.\sqrt{\frac{\alpha}{2}} = \sqrt{\frac{3}{2}}, \quad \alpha = 3.