Solveeit Logo

Question

Question: A circular disc of radius $\frac{R}{2}$ is cut from a circular disc of radius R and mass 4M as shown...

A circular disc of radius R2\frac{R}{2} is cut from a circular disc of radius R and mass 4M as shown in figure. Then moment of inertia about the centre of the disc and \perper to its plane is

Answer

The moment of inertia is 13MR28\frac{13MR^2}{8}.

Explanation

Solution

Solution

  1. Original Disc:

    • Mass = 4M, Radius = R
    • Moment of inertia about its center: Ilarge=12(4M)R2=2MR2.I_\text{large}=\tfrac{1}{2}(4M)R^2=2MR^2.
  2. Cut-out Disc:

    • Radius = R2\tfrac{R}{2}.
    • Area density: σ=4MπR2\sigma=\dfrac{4M}{\pi R^2}.
    • Mass of cut-out: m=σπ(R2)2=4MπR2πR24=M.m=\sigma\cdot \pi\left(\tfrac{R}{2}\right)^2=\dfrac{4M}{\pi R^2}\cdot \pi\frac{R^2}{4}=M.
    • Its moment inertia about its own center: Icm=12m(R2)2=MR28.I_\text{cm}=\tfrac{1}{2}m\left(\tfrac{R}{2}\right)^2=\frac{MR^2}{8}.
    • The center of the cut-out is at a distance d=R2d=\tfrac{R}{2} from the center of the large disc.
    • Using the parallel axis theorem, its moment inertia about the large disc’s center: Icut=Icm+md2=MR28+M(R2)2=MR28+MR24=3MR28.I_\text{cut}=I_\text{cm}+m\,d^2=\frac{MR^2}{8}+M\left(\frac{R}{2}\right)^2=\frac{MR^2}{8}+\frac{MR^2}{4}=\frac{3MR^2}{8}.
  3. Net Moment of Inertia:

    Subtract the cut-out contribution from the original disc:

    Inet=IlargeIcut=2MR23MR28=16MR23MR28=13MR28.I_\text{net}=I_\text{large}-I_\text{cut}=2MR^2-\frac{3MR^2}{8}=\frac{16MR^2-3MR^2}{8}=\frac{13MR^2}{8}.

Explanation (Minimal Core):

  • Total inertia of full disc: 2MR22MR^2.
  • Cut-out (mass M) inertia about its own center: MR28\tfrac{MR^2}{8}; add offset inertia M(R2)2=MR24M\left(\tfrac{R}{2}\right)^2=\tfrac{MR^2}{4} giving 3MR28\tfrac{3MR^2}{8}.
  • Subtract to yield 2MR23MR28=13MR282MR^2-\tfrac{3MR^2}{8}=\frac{13MR^2}{8}.