Solveeit Logo

Question

Question: A circular coil of radius 8 cm, 400 turns and resistance 2\(\Omega\) is placed with its plane perpen...

A circular coil of radius 8 cm, 400 turns and resistance 2Ω\Omega is placed with its plane perpendicular to the horizontal component of the earth’s magnetic field. It is rotated about its vertical diameter through 180° in 0.30 s. Horizontal component of earth magnetic field at the place is 3 × 10-5 T. The magnitude of current induced in the coil is approximately

A

4 × 10-2 A

B

8 × 10-4 A

C

8 × 10-2 A

D

1.92 × 10-3 A

Answer

8 × 10-4 A

Explanation

Solution

Initial flux through the coil

φi=BAcosθ\varphi_{i} = BA\cos\theta

=3×105×π×(8×102)2×cos0= 3 \times 10^{- 5} \times \pi \times (8 \times 10^{- 2})^{2} \times \cos 0{^\circ}

=192π×109Wb= 192\pi \times 10^{- 9}Wb

Final flux after the rotation

φf=3×105×π×(8×102)2×cos180\varphi_{f} = 3 \times 10^{- 5} \times \pi \times (8 \times 10^{- 2})^{2} \times \cos 180{^\circ}

=192π×109Wb= - 192\pi \times 10^{- 9}Wb

\thereforeThe magnitude of induced emf is

ε=Ndφdt=Nφfφidt\varepsilon = N\frac{|d\varphi|}{dt} = \frac{N|\varphi_{f} - \varphi_{i}|}{dt}

=400×(384π×109)0.30=1.6×103V= \frac{400 \times (384\pi \times 10^{- 9})}{0.30} = 1.6 \times 10^{- 3}V

Current I=εR=1.6×1032=8×104AI = \frac{\varepsilon}{R} = \frac{1.6 \times 10^{- 3}}{2} = 8 \times 10^{- 4}A