Solveeit Logo

Question

Physics Question on Electromagnetic induction

A circular coil of radius 8cm8\, cm, 400400 turns and resistance 2Omega2 \,Omega is placed with its plane perpendicular to the horizontal component of the earths magnetic field. It is rotated about its vertical diameter through 180180^{\circ} in 0.30s0.30\, s. Horizontal component of earth magnetic field at the place is 3×105T3\times 10^{-5}\, T The magnitude of current induced in the coil is approximately

A

4×102A4 \times 10^{-2}\,A

B

8×104A8 \times 10^{-4}\,A

C

8×102A8 \times 10^{-2}\,A

D

1.92×103A1.92 \times 10^{-3}\,A

Answer

8×104A8 \times 10^{-4}\,A

Explanation

Solution

Initial flux through the coil ϕi=BAcosθ\phi_{i}=BA\, cos\, \theta =3×105×π×(8×102)2×cos0=3 \times 10^{-5}\times\pi\times(8\times10^{-2})^{2} \times cos\, 0^{\circ} =192π×109WB=192\, \pi \times 10^{-9}\,WB Final flux after the rotation ϕf=3×105×π×(8×102)2×cos180\phi_{f}=3\times 10^{-5}\times\pi\times(8\times10^{-2})^{2}\times cos\, 180^{\circ} =192π×109Wb=-192\, \pi \times 10^{-9}\,Wb \therefore The magnitude of induced emf is ε=Ndϕdt=Nϕfϕidt\varepsilon=N \frac{\left|d\phi\right|}{dt}=\frac{N \left|\phi_{f}-\phi_{i}\right|}{dt} =400×(384π×109)0.30=\frac{400\times\left(384\pi\times10^{-9}\right)}{0.30} =1.6×103V=1.6\times 10^{-3}\,V Current, I=εRI=\frac{\varepsilon}{R} =1.6×1032=\frac{1.6\times10^{-3} }{ 2} =8×104A=8 \times10^{-4}\,A