Solveeit Logo

Question

Physics Question on Electromagnetic induction

A circular coil of radius 10cm10 \,cm, 500turns500\, turns and resistance 2Ω2 \,\Omega is placed with its plane perpendicular to the horizontal component of the earth?s magnetic field. It is rotated about its vertical diameter through 180^{\circ} in 0.25s0.25\, s. The current induced in the coil is (Horizontal component of the earth?s magnetic field at that place is 3.0×1053.0 \times 10^{-5} T)

A

1.9×103A1.9 \times 10^{-3}\, A

B

2.9×103A2.9 \times 10^{-3}\, A

C

3.9×103A3.9 \times 10^{-3}\, A

D

4.9×103A4.9 \times 10^{-3}\, A

Answer

1.9×103A1.9 \times 10^{-3}\, A

Explanation

Solution

Initial magnetic flux through the coil, ϕi=BHAcosθ=3.0×105×(π×102)×cos0\phi_{i}=B_{H}Acos\theta=3.0\times10^{-5}\times\left(\pi\times10^{-2}\right)\times cos0^{\circ} =3π×107Wb\quad =3\pi\times10^{-7}\,Wb Final magnetic flux after the rotation ϕi=3.0×105×(π×102)×cos180\phi_{i}=3.0\times10^{-5}\times\left(\pi\times10^{-2}\right)\times cos180^{\circ} =3π×107Wb\quad =3\pi\times10^{-7}\,Wb Induced emf, ε=Ndϕdt=N(ϕfϕi)t\varepsilon=-N \frac{d\phi}{dt}=-\frac{N\left(\phi_{f} -\phi_{i}\right)}{t} =500(3π×1073π×107)0.25=-\frac{500\left(-3\pi\times10^{-7}-3\pi\times10^{-7}\right)}{0.25} =500×(6π×107)0.25=3.8×103V=\frac{500\times\left(6\pi\times10^{-7}\right)}{0.25}=3.8\times10^{-3}\,V I=εR=3.8×103V2Ω=1.9×103AI=\frac{\varepsilon}{R}=\frac{3.8\times10^{-3}\,V}{2\,\Omega}=1.9\times10^{-3}\,A