Solveeit Logo

Question

Physics Question on Moving charges and magnetism

A circular coil of 16 turns and radius 0.1 m carries a current of 0.75 A . Its plane is normal to the external magnetic field of strength 0.05T . When the coil is turned slightly, it oscillates with a frequency of 2 Hz. Calculate the moment of inertia of the coil about the axis of rotation

A

0.194×104kgm20.194 \times 10^{-4}\,kgm^2

B

2.194×104kgm22.194 \times 10^{-4}\,kgm^2

C

0.1×104kgm20.1 \times 10^{-4}\,kgm^2

D

1.194×104kgm21.194 \times 10^{-4}\,kgm^2

Answer

1.194×104kgm21.194 \times 10^{-4}\,kgm^2

Explanation

Solution

T=2πI/mBT=2 \pi \sqrt{I/ mB} or I=mB4π2v2I =\frac{mB}{4 \pi^2\,v^2} =(NiA)B4π2v2=Ni×πr2B4π2v2(asA=πr2)=\frac{(NiA)B}{4 \pi^2\,v^2}=\frac{Ni \times \pi r^2\,B}{4 \pi^2\,v^2}\,\,\,(as \,A=\pi \,r^2) (Here, i stands for current adn I for nioment ofinertia) or I=16×0.75×(0.1)2×0.054×3.14×(2)2kgm2=1.194×104kgm2 I=\frac{16 \times 0.75 \times (0.1)^2 \times 0.05}{4 \times 3.14 \times (2)^2}kgm^2 =1.194 \times 10^{-4} kgm^2