Solveeit Logo

Question

Physics Question on Moving charges and magnetism

A circular coil carrying current 'I' has radius 'R' and magnetic field at the centre is 'B' . At what distance from the centre along the axis of the same coil, the magnetic field will be B8\frac{B}{8} ?

A

R2R \sqrt{2}

B

R3R \sqrt{3}

C

2R2\,R

D

3R3\,R

Answer

R3R \sqrt{3}

Explanation

Solution

According to the question, magnetic field at the centre of circular coil is given by
Bcentre =μ0Ni2R...(i)B_{\text {centre }}=\frac{\mu_{0} N i}{2 R} \,\,\,\,\,\,\, ...(i)
Baxis =μ04π2πNiR2(x2+R2)3/2B_{\text {axis }}=\frac{\mu_{0}}{4 \pi} \frac{2 \pi N i R^{2}}{\left(x^{2}+R^{2}\right)^{3 / 2}}
B8=μ0NiR22(x2+R2)3/2\frac{B}{8}=\frac{\mu_{0} N i R^{2}}{2\left(x^{2}+R^{2}\right)^{3 / 2}}
From E (i), we get
μ0Ni8×2R=μ0NiR22(x2+R2)3/2\frac{\mu_{0} N i}{8 \times 2 R}=\frac{\mu_{0} N i R^{2}}{2\left(x^{2}+R^{2}\right)^{3 / 2}}
18R=1(x2+R2)3/2\frac{1}{8 R}=\frac{1}{\left(x^{2}+R^{2}\right)^{3 / 2}}
18R3=1(x2+R2)3/2\frac{1}{8 R^{3}}=\frac{1}{\left(x^{2}+R^{2}\right)^{3 / 2}}
8R3=(x2+R2)3/28 R^{3}=\left(x^{2}+R^{2}\right)^{3 /2} (on taking cube root)
2R=(x2+R2)1/22 R=\left(x^{2}+R^{2}\right)^{1/2} (on taking square root)
4R2=(x2+R2)4 R^{2} =\left(x^{2}+R^{2}\right)
4R2R2=x24 R^{2}-R^{2}=x^{2}
3R2=x23 R^{2} =x^{2}
x=R3x =R \sqrt{3}